Introduction to OpenNoiseMap.org

Based on slides by:
Marius Appel
Holger Hopmann
André Roß
Arne de Wall
Agenda

• Introduction
• Mobile application - noiseDroid
• Server - opennoisemap.org
Smartphones

• Multi-sensor platform
 – In your pocket (anywhere, anytime)
 – GPS, camera, microphone, accelerometer, pressure, magnetic field, light
 – 3G and WiFi connection

• Enables crowd-sourcing /crowd-sensing

• Example
 – OpenFloorMap.org
 – OpenNoiseMap.org
Noise as environmental pollution

#2
Noise as environmental pollution

• Effects
 – Hearing loss
 – Cardiological effects
 – Stress
 – Annoyance

• Emitters
 – Airports, cars, industrial sites, etc.

• Subjective
 – Cannot be modeled or calculated
Features

- Collecting noise observations
- Accessing noise observations
 - Mobile and browser-based
 - Own data & community data
- Central storage of noise observations and anonymous access
- Map-based visualization
- Multi-lingual app NoiseDroid
- www.opennoisemap.org
- NoiseDroid in the Android market!
Mobile App - NoiseDroid

• Noise mapping through automatic and manual measurements

• Upload to opennoisemap.org

• Visualizing noise observations

• Android-based
Mobile App

- Capturing noise measures
 - Manual capture
 - Automatic capture
 - Event-based capturing
 - Measure series

- Access measures
 - List
 - Map

- Community
 - Register & log in
 - Upload of observations
 - Download of observations
- manual measurement
- automatic measurement
- event-based measurement
- series

MOBILE APP - NOISEDROID
Manual Measurement

• Measurement in dB
• Duration: 5 Sekunden
• Calculates
 – minimum dB Wert
 – maximum dB Wert
 – Average dB Wert
 – Quality of measurement
• Automatic positioning (GPS, WiFi, cell-ID)
Manual Measurement

• Measurement in dB
• Duration: 5 Sekunden
• Calculates
 – minimum dB Wert
 – maximum dB Wert
 – Average dB Wert
 – Quality of measurement
• Automatic positioning (GPS, WiFi, cell-ID)
Manual Measurement

• Measurement in dB
• Duration: 5 Sekunden
• Calculates
 – minimum dB Wert
 – maximum dB Wert
 – Average dB Wert
 – Quality of measurement
• Automatic positioning (GPS, WiFi, cell-ID)
Additional information

- Subjective rating
- Tagging
- Comment
Additional information

• Subjective rating
• Tagging
• Comment
Additional information

• Noise emitter (source)
 – Close to current position
 – Further away
 • Distance (Measure by distance tool)
 • Exact position
 – Cannot be determined
Additional information

• Distance tool
 – Helps to measure the distance to the source
 – Calculated based on angle function
 – Height of device to be configured in settings
 – How do I use it? Simple!
 • Point & shoot 😊
Automatic measurement

• Measurements based on time intervals

• Configure under settings

• Automatic measurements are indicated in the status bar
Automatic measurement

- Measurements based on time intervals
- Configure under settings
- Automatic measurements are indicated in the status bar
Automatic measurement

• Measurements based on time intervals

• Configure under settings

• Automatic measurements are indicated in the status bar
Event-based Measurement

• Extension of the automatic measurement

• Measurement taken upon specific system event
Event-based Measurement

• Extension of the automatic measurement

• Measurement taken upon specific system event
Event-based Measurement

- Extension of the automatic measurement
- Measurement taken upon specific system event
Measurement quality

- Quality important aspect of automatic measurements
- Quality provides context to the measurement
- Rule-based evaluation of sensors for calculating context
Series

- Logic collection of measurements
- Status
 - active
 - Paused / on hold
 - terminated
- Break conditions
 - Elapsed time
 - Spatial extent
Temporal constraint

- Automatic termination when time/date is reached
- Predefined and user-defined duration
Temporal constraint

- Automatic termination when time/date is reached
- Predefined and user-defined duration
Temporal constraint

- Automatic termination when time/date is reached
- Predefined and user-defined duration
Temporal constraint

- Automatic termination when time/date is reached
- Predefined and user-defined duration
Temporal constraint

- Automatic termination when time/date is reached
- Predefined and user-defined duration
Spatial constraint

- Terminate series whenever smartphone is outside of the spatial area
Spatial constraint

• Terminate series whenever smartphone is outside of the spatial area
Start/Stop of the series

- Series requires a title
- Series can be put on hold
List

- List of all (local & community) measures
- Grouped and sorted by time
List

• Symbols
 - Automatic measures
 - Manual measures
 - Measure uploaded
 - Measure downloaded
 - Error while uploading
Functions

- Grouping
- Sorting
- Uploading
- Filtering
- Community
Measurement details

- Detailed information per measurement
Map

- Map button
- Each measurement is a circle
 - Green: Low noise (35 dB)
 - Yellow: Medium noise (50 dB)
 - red: high noise (70 dB)
Map functions

- Layers
- Search
- My location
- Selection
- (Filtern)
- (Community)
BROWSER-BASED MAPS
Map

• Technology
 – OpenLayers & Ext Js
• Measurements served by WFS, GeoServer
• Basemaps
 – OpenStreetMap
 – Google Maps
• Client-side interpolation of measurements
Map

Selecting measurements

Basemap

Temporal selection
Map

Activate/hide tab
Map
• Architecture
• Software
• XML-messaging

INSIDE THE PLATFORM
Architecture

Userdata Measurement data

Server

Java EE 6 Infrastructure (GlassFish 3.1)

Servlets 3.0

Enterprise Java Beans 3.1

JAAS JPA 2.1

GeoServer 2.1.1

HTTP-Post (XML) Authentifi. complex queries, adding measurement.

HTTP-Post (JSON) Simple queries

NoiseTube Data

Internet

App

Measurement Management

Map View

List View

Website

Map View

List View

WFS

XML

WMS

JSON
Software used

Client Tier
- App
- Browser

Web Tier
- Java Server Pages/Faces

Business Tier
- Enterprise Beans

EIS Tier
- Datenbank

Android-basiertes Smartphone
Clientseitiger Browser

Java EE 6 Technologie auf einem Glassfish Application Server

PostgreSQL mit PostGIS extension
Architecture overview
Endpoint

Server: http://giv-noismappin1.uni-muenster.de:8080/NoiseServerServlets/AppServlet

Geoserver: http://giv-noismappin1.uni-muenster.de:8080/geoserver

SVN (read-only): URL: https://subversion.ifgi.de/noise-game/
 Login: initNoiseGame
 Password: initNoiseGame
Message structure

<table>
<thead>
<tr>
<th>Client (Request)</th>
<th>Server (Response)</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><Requests></code></td>
<td><code><Responses></code></td>
</tr>
<tr>
<td><code><Selfdescription></code></td>
<td><code><Response type="Typ1"></code></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td></Selfdescription></td>
<td></Response></td>
</tr>
<tr>
<td><code><Request type="Typ1"></code></td>
<td><code><Response type="Typ2"></code></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td></Request></td>
<td></Response></td>
</tr>
<tr>
<td><code><Request type="Typ2"></code></td>
<td></Responses></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>
Server operations

• Server supports
 – Register
 – Login
 – GetInfo
 – AddMeasures
 – UpdateSeries
 – GetMeasures
Example: Register

<table>
<thead>
<tr>
<th>Request „Register“</th>
<th>Response: Registering successful</th>
<th>Response: Registering failed</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><Request type="Register"></code>
 <code><Username value="test" /></code>
 <code><Email value="test" /></code>
 <code><Password value="f868315c1b...a223" /></code>
 <code></Request></code></td>
<td><code><Response type="Register"></code>
 <code><Successful /></code>
 <code></Response></code></td>
<td><code><Response type="Register"></code>
 <code><Error type="AlreadyRegistered" /></code>
 <code></Response></code></td>
</tr>
</tbody>
</table>
AddMeasures: Request

Attribute: Automatic measurement

```xml
<Measure id="0" type="automatic">
  <Time value="2011-02-11 16:53:42" />
  <LocationMeasure longitude="7.000000" latitude="51.000000"
         accuracy="131.0" provider="network" />
  <Noise value="42.451363" />
  <Moral value="100.0" />
</Measure>
```
AddMeasures: Request

Attribute: Manual Measurement

```xml
<Measure id="0" type="manual">
  <Time value="2011-02-11 16:53:42"/>
  <LocationMeasure longitude="7.000000" latitude="51.000000"
      accuracy="131.0" provider="network"/>
  <Noise value="42.451363"/>
  <Moral value="100.0"/>
  <Description>Test</Description>
  <Distance value="0.0"/>
  <Rating value="0.0"/>
  <Tags>
      <Tag value="Verkehr"/>
      <Tag value="Baustelle"/>
  </Tags>
  <LocationSource longitude="7.000000" latitude="51.000000"/>
</Measure>
```
AddMeasures: Request

Attribute: Series

```xml
<MeasureSeries id="134">
  <Description>Test</Description>
  <Title value="" />
  <Time value="2011-02-16 18:03:25" />
  <Tags>
    <Tag value="Verkehr"/>
    <Tag value="Baustelle"/>
  </Tags>
  <Measure id="6" type="manual">
    ...
  </Measure>
  <Measure id="7" type="automatic">
    ...
  </Measure>
</MeasureSeries>
```
AddMeasures: Response

Attribute: AddMeasures Response

```xml
<Response type="AddMeasures">
  <Successful>
    <Measure localid="0" serverid="123"/>
    ...
  </Successful>
  <Error type="">
    <Measure localid="1"/>
    ...
  </Error>
</Response>
```
GetMeasures: Request

Attribute: GetMeasures Request

```xml
<Request type="GetMeasures">
  <Filter>
    <Time from="" to="" />
    <BBox top="" bottom="" left="" right="" />
    <Tags mode="all/some">
      <Tag value="" />
      ...
    </Tags>
    <Description contains="" />
    <MaxResults value="" />
    <Geocode value="" />
  </Filter>
</Request>
```
GetMeasures: Response

<table>
<thead>
<tr>
<th>Attribute: GetMeasures Response</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><Response type="GetMeasures"></code></td>
</tr>
<tr>
<td><code> <Measures></code></td>
</tr>
<tr>
<td><code> ...</code></td>
</tr>
<tr>
<td><code> </Measures></code></td>
</tr>
<tr>
<td><code></Response></code></td>
</tr>
</tbody>
</table>