
Towards a Transactional Web Processing Service
(WPS-T)

Bastian Schaeffer

Institute for Geoinformatics, University of Muenster
schaeffer@uni-muenster.de

Abstract. The OGC Web Processing Service specification provides a means
to perform distributed web-based processing on geodata. However, the
specification does not provide the ability to dynamically deploy and
undeploy processes. This was the starting point for this paper to extend the
specification with a generic means to deploy and undeploy processes at
runtime, by adding two new operations to the WPS interface. Since the
proposed approach allows any kind of processes to be deployed, specialized
deployment profiles have to be offered. A BPEL deployment profile will be
introduced, which allows geoprocessing workflows to be exposed as simple
WPS processes. The applicability will be demonstrated by a real world air
quality assessment use case.

1 Introduction
The rapid evolution from monolithic desktop GIS applications with tightly
coupled geodata to Spatial Data Infrastructures (SDI) (Groot and
McLaughlin 2000) with independent, interoperable and distributed Web
Services has changed the GIS world fundamentally (Masser 2003) (Bernard
et al. 2005). Nevertheless, existing SDIs are focused on data retrieval and
visualisation (Kiehle et al. 2006). To generate information out of data, it
becomes necessary to process data (Ernst 2000). With growing
computational power and network capabilities, web based processing of
distributed data towards information becomes therefore one of the main
interests in the IT world. The advent of Web Services and Service-Oriented
Architecture (SOA, (Gottschalk et al. 2002)) leveraged distributed
processing using Web Service technology and became also one of the
major interests in the geoinformation (GI) domain, as most of the GI
applications involve large amounts of globally distributed data and as the
demand for distributed available geo-information increases. The role of
web-based geoinformation as a key factor for SDIs in the future requires
sufficient concepts for web-based processing. Such processes have to be
able to access globally distributed data and to provide the information in
line with the already available standards. The OGC Web Processing
Service (OGC 2007a) provides a standardized means for this purpose of

web-based geoprocessing. In the last two years a number of communities
such as 52°North (Schaeffer and Foerster, 2007) or pyWPS (Cepicky 2006)
have started to implement this specification and demonstrated its
applicability by several use cases. While Foerster and Stoter (2006) focused
on generalization, Kiehle (2006) proofed the WPS concept within the
groundwater vulnerability measurement domain.

However, the complexity of geospatial analysis often requires multiple
processing steps implemented by processing chains, in which each element
performs an isolated task while the whole chain addresses a much broader
problem (Gehlot and Verbree 2006). For the future, Alameh (2003)
identified these service chains as one of the key concepts in enabling value-
added chains in SDIs. Especially with the advent of the SOA paradigm, the
modelling of SOA-based Geoproccessing workflows based on standardized
OGC services will become more vital for the growing GIS community
(Kiehle et al. 2006) (Weiser and Zipf 2007). Web Service Orchestration
(Pelz 2003a) provides a means to represent these workflows based on
XML. While van der Aalst (2003) and (Pelz 2003b) discuss different
orchestration approaches and compare different languages for the IT world,
the applicability of BPEL as an appropriate workflow language and thereby
the applicability of the centralized orchestration approach for the GI-
domain was demonstrated by (Weiser et al. 2006) and the OGC Open Web
Service Testbeds 4 (Keens 2007).

Despite the importance of workflow modelling, only little research has
been conducted on exposing or sharing process models in a standardized
way. An innovative geoprocessing model is usually developed with a
dedicated purpose but with limited testing. In most cases the workflow is
published, but it is short lived since e.g. the researcher changes the
employer, the projects ends or the coding platform is changed (Gehlot &
Verbree 2006). This limits the interoperability since there is no
standardized way for packaging geoprocessing workflows and exposing
them in a standardized way for integration into SDIs. This was the starting
point for this paper to create a standardized way for exposing SOA based
geoprocessing workflows on the basis of a WPS. Unfortunately, the WPS
interface does not offer an operation for this purpose. Therefore this paper
proposes to extend the WPS interface with the ability to dynamically
deploy and undeploy processes at runtime. The taken approach will not be
limited to workflows only but will moreover present a generic way of
dynamically deploying and undeploying processes. Therefore, different
kinds of WPS-T profiles can be developed to foster interoperability.
Although the ORCHESTRA project developed a similar service
(ORCHESTRA 2007), the presented approach goes beyond the

ORCHESTRA service specification by allowing not only service chains to
be deployed. Moreover it builds on top of the already standardized WPS
interface and thus exposes the deployed processes as standardized WPS
processes. This allows the reuse of existing clients for e.g. executing those
processes. Additionally, by following a generic profiles approach, XML
schemas can be used to validate the input data, while the ORCHESTRA
Service only uses non standardized identifiers to point out the supported
workflow languages.

However, the focus will be led on creating a specific profile for exposing

complex models as simple WPS processes as the basic motivation for the
taken approach. This would foster the integration of these models as
building block for newly developed hierarchical models.

Section 2 provides a brief overview of the underlying technologies. This
is followed by a conceptual design including the extended service
specification and intended architecture. The last two chapters provides a
proof of concept implementation in the field of air quality assessment.

2 Background
This chapter provides an overview of the underlying technology for this
study. Especially the Web Processing Service and related geoprocessing
workflows will be introduced.

2.1 OGC Web Processing Service
The proposed OGC Web Processing Service (WPS) Specification (OGC
2007a) describes a standardized way to perform distributed (geo) processes
in a spatial data infrastructure. These processes can be as simple as the sum
of two numbers (e.g. population) or as complex as a global climate model.
The data required by the service can be delivered across a network or made
available on a server. The specification is held generic in order to support
any kind of data format. Thus, image data formats or data exchange
standards such as Geography Markup Language (GML) (OGC 2007b) can
be used for input or resulting data.

Figure 1: Basic WPS interaction pattern

The interface is based on three operations as shown in figure 1:

GetCapabilities, DescribeProcess and Execute. Since a WPS should be
able to be integrated in to the OpenGIS framework, it has to offer the
GetCapabilites operation generally described by the OWS Common
specification. Besides the OWS Common metadata, and basic service
metadata, all processes offered by the WPS are briefly described in the
capabilities document. The DescribeProcess operation offers full
descriptions of a specific process. This includes the detailed input and
output parameter descriptions as well as supported formats.

The WPS specification distinguishes between three basic input/output
data types.

1. “ComplexData” such as XML (e.g. GML), imagery or a reference (URL)
to the actual data.

2. “LiteralData”, with a specified “DataType”, allowed values,
“DefaultValue” and “SupportedUOMs” indicated.

3. Bounding Box information, using one of the supported coordinate
reference systems.

Using these input parameter values, requestors can perform a desired
process offered by a server via the Execute operation. The WPS creates
either a direct response to the request including information about the status
of the process or, alternatively, the server can be directed to store the

result(s) as web accessible resources identified by a Uniform Resource
Locator (URL). If the results are stored, the Execute response will consist
of an XML document that includes a URL for each stored output, which
the client can use to retrieve those outputs

2.2 Web based Geoprocessing Workflows
The chaining of web services to workflows where the output of a partner
can be used as input for another partner has been identified as one of the
key factors for SDIs (Alameh 2003). With advances in SOA and Web
Services, it becomes possible to solve complex geoprocessings tasks by
composing several web based processes offered by differed web service to
a workflow. This workflow can be exposed again as a Web Service. Alonso
et al. (2003) speaks of a composite service and names the act of combining
Web Services, Web Service Composition. Service composition can be
either performed by composing elementary or composite services, the latter
being recursively defined as an aggregation (Khalaf et al. 2003) of
elementary and composite services.

The services inside of a workflow can follow different interaction
patterns: Web Service Orchestration (WSO) or Web Service Choreography.
The first one is defined as a description of how composed Web Services
interact on the message level (Pelz 2003a). This includes business-logic
and execution order. The latter is more focused on the public message
exchange between multiple parties (Reichert et al. 2004), while Web
Service Orchestration has to follow the specified message exchange
protocol, but adds the business logic as internal Web Service calls. Since
Web Service Choreography specifies an explicit message interaction
protocol, each service knows its predecessor and successor. In contrast,
Web Service Orchestration is often realized by a central orchestration
engine, which coordinates the interaction based on a predefined message
exchange protocol. Hence, the Web Services can be held loosely coupled
(Veerawarana et al. 2005).

The semi-automatic central orchestration architecture is implemented by

several vendors (e.g. Oracle BPEL Process Manager1 or ActiveBPEL2).
These frameworks make use of the Business Process Execution Language
(BPEL) as the de-facto standard (van der Aalst et al. 2005). BPEL evolved
from former standards, such as graph based WSFL or block based and
algebraic XLANG and was proposed by IBM, Microsoft and BEA

1 Oracle BPEL Process Manager website: www.oracle.com/technology/bpel/index.html
2 ActiveBPEL website: www.active-endpoints.com/active-bpel-engine-overview.htm

(Andrews et al. 2003). The language is XML based and describes the roles
and partners involved in the message exchange, supported port types and
orchestration information of a process. It can also be regarded as a service
composition model (Wohed et al. 2003), which supports composition and
coordination protocols (Chen et al. 2006). The core elements are an
activity-based component model, an orchestration model that allows the
definition of structured activities, XML schema data types, a service
selection model and a mechanism for exception and event handling. Since
BPEL is strongly related to Web Services, BPEL4WS is build on top of
numerous XML based specifications: WSDL 1.1, XML Schema 1.0 and
XPath 1.0. The WSDL descriptions are required for all participating
services while the XML Schema specifies the datatypes in conjunction with
the WSDL messages and XPath is needed for internal data manipulation.

3 Conceptual Design
This chapter designs conceptually the WPS-T approach. The basic
approach intends to allow any kind of geoprocess to be deployed at runtime
such as executable Jar-files or XML-based workflow descriptions. To
foster interoperability, profiles have to be used to machine-readably
indicate what kind of process description is understood by the server. Since
the dynamic deployment of workflows served as the basic motivation, a
BPEL profile will be introduced in this section besides the actual interface
specification.

3.1 Operation Specification
As desribed above, the WPS specification has to be extended in order to
dynamically deploy and undeploy workflows as shown in Figure 2 as an
UML class diagram.

Figure 2: WPS-T Hierarchy.

The Transactional WPS extends the WPS with two new operations:
DeployProcess and UndeployProcess. The GetCapabilities is also inherited
from the parent WPS which inherits it from the OGCWebService entity.
All operations are described in detail in the following sections.

3.1.1 GetCapabilities modifications
The extension of the basic WPS interface with two new operations requires
the modification of the GetCapabilities Metadata accordingly. Obviously,
both new operations have to be inserted in the <ows:OperationMetadata>
tag as a new <Operation> e.g.

<ows:Operation name="DeployProcess">
 <ows:DCP>
 <ows:HTTP>

<ows:Post xlink:href="http://hooters.uni-
muenster.de:8080/wps/WebProcessingService"/>

</ows:HTTP>
</ows:DCP>

</ows:Operation>

Listing 1. WPS-T Capabilities Extension.

Secondly, to keep the DeployProcess operation generic, the
GetCapabilities metadata has to provide a list of supported schemas
profiles for deployment. For instance, if a WPS instance only understands
BPEL and not e.g. YAWL or JAR deployment profile, a specific BPEL
deployment profile has to be announced in the GetCapabilities metadata.
Therefore, the WPS GetCapabilities response schema has to be modified
according to listing 1 and 2.

<wps:Capabilities>
 […]

<wps:SupportedDeploymentProfiles>
 <wps:Default>

<wps:DeploymentSchema
xlink:href="http://foo.bar/BPEL_Profile.xsd" />

 </wps:Default>
 <wps:Supported>

<wps: DeploymentSchema
xlink:href="http://foo.bar/XY_Profile.xsd" />

 </wps:Supported>
</wps:SupportedDeploymentProfiles>

</wps:Capabilities>

Listing 2: WPS-T Deployment Profiles.

This approach allows the WPS to specify any kind of schema which can
range from BPEL descriptions to a generic Java source code or executable
JARs using a mobile code approach (Vigna 1997) or GRASS function
compositions. One default schema has to be set and an optional list of
supported schemas. The WPS-T has to understand the schemas and extract
the information to expose the described process as a simple process.

3.1.2 DeployProcess
The DeployProcess operation shall offer requestors a means to dynamically
deploy a specified process. The XML encoded request shall be send via
HTTP-POST and follow the schema specified in figure 3.

3.1.2.1 Request
The DeployProcess Request allows clients to dynamically deploy a process
according to the supported deployment profiles (see the previous
subsection). Figure 3 presents the structure of a DeployProcess request as a
conceptual diagram. After a successful deployment, the process should be

present in the GetCapabilites <wps:ProcessOfferings> list and be
accessible like any other process.

Figure 3: DeployProcess Request Schema.

The <DeployProcessRequest> request element inherits from the general
<WPSRequestBase> (see OGC 2007a), which just overrides the service
parameter inherited from the <RequestBase> specified in OWS Common
(OGC 2007c). This < DeployProcessRequest > itself overrides the inherited
request parameter with the CharacterString “deployProcess”. Additionally
it consists of a <wps:ProcessDescription> element as specified by the WPS
specification and should contain exactly one process description document
as specified by the WPS 1.0.0 specification. This document shall be
returned as a result of a DescribedProcess request when this process is
deployed. Furthermore, a generic <DeploymentProfile> data structure is
part of the deploy process request. This element serves as a toplevel
container for any kind of XML encoded process behaviour such as a BPEL
script or a referenced or base64 encoded Jar file. Specific profiles have to
extend this element to ensure interoperability. Therefore, the <Schema>
element of the <DeploymentProfile> element has to match one of the
offered deployment schemas in the GetCapabilities metadata which extend
the <DeploymentProfile> element.

3.1.2.2 Response
The DeployProcessResponse indicates if the request has succeeded or not.
If the process has been successfully deployed and exposed as a simple
WPS process, an XML document shall be returned back in compliance
with the following schema:

Figure 4: Deploy Process Response.

In case the process could not be successfully deployed an error message

should be returned, which is described in the following section.

3.1.2.3 Exceptions
In case a WPS server encounters an error while performing a
deployProcess operation, an exception report message as specified in (OGC
2007a) and table 1 will be returned.
Table 1: Deploy Process Exception Codes.

exceptionCode
value

Meaning of code “locator” value

OperationNotSupp
orted

Request is for an operation that is not supported by
this server

Name of operation
not supported

MissingParameter
Value

Operation request does not include a parameter
value, and this server did not declare a default
value for that parameter

Name of missing
parameter

InvalidParameterV
alue

Operation request contains an invalid parameter
value

Name of parameter
with invalid value

oApplicableCode No other exceptionCode specified by this service
and server applies to this exception

None, omit “locator”
parameter

DeploymentProfile
NotSupported

The process could no be deployed due to the
delivered schema is not supported

Name of operation to
be deployed
unsuccessfully

3.1.3 UndeployProcess
The UndeployProcess operation offers requestors a mechanism to undeploy
a specified process from a WPS. The XML encoded request shall be send
via HTTP-POST and shall follow the schema specified in figure 5.

3.1.3.1 Request

The <UndeployProcess> elements should have exactly one <Process>
element besides the elements inherited from the <wps:RequestBaseType>.
The <Process> element should have an id attribute, which should represent
the process id of the process to be undeployed.

Figure 5. Undeploy Process Request.

3.3.1.2 Response
The response for the UndeployProcess request will be an XML document
following the schema indicated in figure 6.

Figure 6: UndeployProcess response schema visualisation.

Analogous to the DeployProcess result, the <Result> element shall indicate
via the boolean success attribute, if the process could be successfully
undeployed. A WPS-T shall be able to undeploy all processes previously
deployed via the DeployProcess operation. As not all WPS processes need
to be deployed via the WPS-T DeployProcess operation, it is not
guaranteed that all process can be undeployed.

3.1.3.3 Exceptions
When a WPS server encounters an error while performing a
undeployProcess operation, it shall return an exception report message as
specified in (OGC 2007a). and table 2.

Table 2: Undeploy Process Exception codes.
exceptionCode

value
Meaning of code “locator” value

OperationNotSupp
orted

Request is for an operation that is not supported by
this server

Name of operation
not supported

MissingParameter
Value

Operation request does not include a parameter
value, and this server did not declare a default
value for that parameter

Name of missing
parameter

InvalidParameterV
alue

Operation request contains an invalid parameter
value

Name of parameter
with invalid value

NoApplicableCode No other exceptionCode specified by this service
and server applies to this exception

None, omit “locator”
parameter

UndeploymentFail
ure

The process could no be undeployed. Name of operation to
be deployed
unsuccessfully

3.2 BPEL Profile
As described in section 3.1.1, the WPS-T provides a generic mechanism to
support any kind of process description schema. Since the dynamic
deployment of workflows was the initial motivation, this study focuses on
BPEL as the de-facto workflow description standard (van der Aalst 2003).
Therefore, this section introduces a BPEL WPS-T profile. If a WPS offers
that schema, clients will be able to expose BPEL workflows as simple WPS
processes at runtime. The WPS-T which supports that profile
implementation is responsible for either orchestrating or choreographing
the workflow or for delegating this task to a third party like a BPEL engine.
Figure 7 describes the basic idea. This profile approach keeps the design
modular and allows further adjustments and extensions to other
requirements.

Figure 7: Black Box deployment approach for the Workflow Profile.

The Geoprocessing workflow modeled on the left side of figure 7

consists of blue WPSs each containing a black process. This rather
complex process can be seen as a black box, in which only input A and B
and output C and D are visible from outside. Thus, this black box is
nothing else than a WPS process. Because the workflow can be regarded as
a WPS process it could also be executed as any other WPS process, if
deployed on a WPS-T. This approach would also enable other workflows
to incorporate the modeled workflow in their workflow as a simple WPS
process. But to enable the process to be accessible via the WPS standard
interface, it has to be deployed onto a WPS using the newly introduced
deployProcess operation (see Section 3.1.2), as seen on the right side of
figure 7.

This profile inherits from the previously defined <DeploymentProfile>

and incorporates all necessary parts as required by BPEL and consists of
five mandatory elements as shown in figure 8.

Figure 8: BPELDeploymentProfile Structure.

To insure interoperability of the profiles the <wps:Schema> element is
inherited from the <DeploymentProfile> specified in
DeployProcessRequest from 3.1.2.1 and indicates the schema for this
profile which is referenced in the Capabilities service metadata.

Additionally, the <SuitCase> parameter acts as a meta parameter, which
describes the use of other elements. As shown in figure 9, it basically
describes the BPEL process to be deployed by the <BPELProcess>
element. This element shall have three attributes. The src attribute
describes the name of the BPEL script. The optional noAlterWSDL attribute
indicates whether the BPEL engine is allowed to alter the WSDL definition
for participating Web Services in the workflow or not. The id attribute
defines the actual process id under which the process can be invoked.

Figure 9: Detailed DeployProcess request schema visualisation

Furthermore, the <BPELProcess> element should have a
<partnerLinkBindings> element, which represents a container element for
multiple <partnerLinkBinding> elements. Each of these elements

represents a participating Web Service and have a name attribute and a
<property> element specifying the actual name for the WSDL file for
easier deployment on a BPEL engine.

The <BPEL> parameter of the DeployProcess operation shall include the
BPEL script representing the modeled workflow. It should follow the
BPEL4WS 1.1 specification (Andrews et al. 2003) with the limitation that
only BPEL processes with a single receive statement are allowed to avoid
the complexity of correlation and multiple WPS processes resulting from
one BPEL process.
The <ProcessWSDL> parameter should contain a WSDL file describing
the workflow itself applying the WSDL 1.1 schema (W3C 2001), since it
can also be seen as a Web Service. The <WSDLList> parameter should
include WSDL descriptions for all Web Services participating in the
workflow. Each Web Service should be described in WSDL 1.1. Apart
from this, the WSDL files should be extended with a <PartnerLink>
element since it is required for the BPELEngine.

4. Realization
This chapter picks up the conceptual design and the specification work
accomplished in the previous chapter and tries to verify the ideas by a
prototypical Java implementation.

The 52°North3 Web Processing Service implementation was used as the
basis for the specified WPS extensions. This implementation is fully
compatible to the OGC 1.0.0 standard and provides due to a modularized
concept (Schaeffer and Foerster 2007) an ideal starting point.

One goal was to alter the underlying 52°North WPS implementation as
little as possible. Therefore, the logic for the two new operations was
completely separated and bundled as a new servlet. This technical approach
keeps the Transactional WPS extension optional as theoretically intended
by section 3. Hence, the DeployProcess and UndeployProcess operations
have to be called on a different endpoint than the original operation. This
behaviour is supported by the OWS common (OGC, 2007c) specification
in terms of allowing different URLs for every operation. In order to not
only support predefined algorithms as it was originally implemented by the
52°North implementation, a dynamic concept had to be introduced in order
to enable the WPS-T to register and unregister an algorithm at runtime. A
static local repository provides access to predefined algorithms, which are
available on the same machine as the WPS-T. Dynamic Repositories allow

3 52°North website: http://www.52North.org

the registration and unregistration of processes at runtime. The
BPELRepository in figure 10 is a sample implementation which
implements the BPEL Profile specified in section 3.2 and acts as a dynamic
wrapper for a BPEL engine.

 Figure 10: Basic WPS-T Architecture.

Workflows deployed on a BPEL engine are accessed and wrapped as
algorithms by this repository. The WPS-T servlet directly accesses the
BPEL repository for deploying/undeploying processes which follows the
BPEL deployment profile specified in section 3. Since the WPS servlet is
responsible for executing the processes, it requests the repository manager
to get access to all registered algorithms. By encapsulating algorithms from
static and dynamic algorithm repositories behind this unified interface, the
WPS servlet does not need to know what kind of repositories and
algorithms are registered. It only needs a standardized way of fetching the
necessary process which is delivered by the RepositoryManager. Therefore,
the architecture is held open to support different repositories supporting
different deployment profiles as indiacated by the XYRepository in figure
10.

The following sections describe the taken approach in detail.

4.1 A generic repository concept
A new repository concept was introduced to the 52°North WPS core
functionality. This became necessary because the new WPS-T technology
requires a dynamic repository approach as described above. The WPS

concept of loading processes classes from a properties file was replaced by
a generic repository concept. As shown in figure 11, all repositories are
registered at startup at the org.n52.wps.server.RepositoryManager. Other
classes from the WPS business logic are able to obtain an instance of a
class implementing org.n52.wps.server.IAlgorithm interface via the
getAlgorithm(String algorithmID) method.

Figure 11: WPS-T architecture as a UML class diagram

This approach follows in principle the factory pattern (Gamma et al.
2005) because specific repositories have to implement the
org.n52.wps.server.IAlgorithmRepository interface and use their own
behaviour of creating algorithms. The
RepositoryManager.getAlgorithm(String algorithmID) method searches in
every registered repository for the requested algorithm. The
RepositoryManager.getAlgorithms() method returns a list of all currently
registered algorithm ids. To obtain all algorithms ids, every registered
repository is requested for their registered algorithm ids by calling the
getAlgorithmNames() method.

This flexible approach enables the WPS-T to register multiple
repositories and delegates the responsibility for fulfilling the contract
manifested by the IAlgorithmRepository and IAlgorithm interface in the
hands of the actual implementations. Therefore, this concept allows the
WPS-T to work with static and dynamic repository behaviors.

4.2 Static Repositories
The WPS-T implementation is equipped with two different repository
types. The default repository is the
org.n52.wps.server.LocalAlgorithmRepository. It is a static repository
because at start-up this repository reads a properties file once and creates
an instance for every registered algorithm derived from the abstract
org.n52.wps.server.AbstractAlgorithm class. The created classes are stored
in a hashtable identified by their classname. Additionally, the abstract
org.n52.wps.server.AbstractAlgorithm class provides an already
implemented method for creating the describeProcess document.

4.3 Dynamic Repositories
The new Dynamic Repository approach has three levels of abstraction. On
the general level, it defines the IDynamicAlgorithmRepository interface,
which extends the basic IAlgorithmRepository. So, on the one hand, it can
still be requested by the RepositoryManager in order to retrieve registered
algorithm by the IAlgorithm-Repository methods. On the other hand, the
IDynamicAlgorithmRepository requires dynamic behavior by specifying
the IDynamicAlgorithmRepository.addAlgorithm() and
IDynamicAlgorithmRepository.removeAlgorithm() methods. This
approach allows different kinds of dynamic repositories to be registered.
On the second level of abstraction, a particular dynamic repository for
BPEL processes was implemented as a sample dynamic repository using
the abstract repository concept. The BPELRepository class, which
implements the IDynamicAlgorithmRepository interface and uses an
implementation of the IDeployManager interface for the actual
communication with the BPEL engine. The IDeployManager is the third
level of abstraction, since it allows the use of different kinds of BPEL
engine. For instance, the OracleBEPLManager class can be substituted by a
class connecting to an ActiveEndpoints4 BPEL engine, without changing
the toplevel classes, since they all operate on interface methods.

 The implemented repository mechanisms are validated by a real world
use case described in the following section.

5. A Distributed Processing Scenario on Air Quality
European Union legislation (Council Directive 1999) brought air quality
into the spot light. The legislation has to be adopted by national law by all
member states and sets strict limits for different air quality parameters. This

4 http://www.active-endpoints.com/active-bpel-engine-overview.htm

use case focuses only on Particulate Matter (PM10) as one of the most
hazardous aerosols (BMFU 2005).

In order to maintain the specific limits on PM10, urban agglomeration

areas have addressed that issue in different ways (Kossak 2004). Like most
urban agglomeration areas, several parts of Germany exceed the PM10
limits on a regular basis (DIN 2006). Therefore, the temporal closing of
highly frequented roads for vessels with diesel engines can be one solution
in order to maintain the EU limits, since the amount of traffic induced
PM10 is around 40% in urban areas (CAFE 2004).

As a proof of concept of the introduced approach in this study, a generic
model is developed, which indicates road sections in highly polluted areas
based on interoperable Web Services. The distributed data and services are
incorporated in a Geoprocessing Workflow to form the model and produce
the desired output. As input data for this model, road data of North-Rhine-
Westphalia from an ATKIS5 database delivered through an Interactive
Instruments6 WFS 1.1.0 hosted by the LDS7 is provided as well as close-
real-time air quality data collected from seventy-one monitoring stations
representatively spread over NRW and delivered through a Sensor
Observation Service wrapped by a WPS.

To solve the given problem, a workflow has to be modelled consisting of
five loosely coupled WPS. For demonstration purpose, the whole workflow
will be split into a basic workflow and an advanced workflow which will
incorporate the basic one.
As presented in figure 12, the basic workflow takes as input a SOS URL
and outputs interpolated polygons based on the input data with the help of
three service. The first service encapsulates a SOS and outputs O&M
which only contains PM10 measurements. The second service takes the
O&M document from the first service and transforms it into GML point
features. The final service in this basic workflow interpolates GML point
features via the Thiessen Interpolation method and outputs GML polygons.
After modelling this basic workflow, it has to be deployed via the WPS-T
interface to be accessible and reusable over the web as a simple WPS
process. Thus, a WPS-T deployProcess request has to be formed and all
necessary data has to be acquired. Since we want to use a BPEL profile, the
request has to follow the schema presented in section 3.2. Fortunately, the

5 http://www.atkis.de/
6 http://www.interactive-instruments.de/index.php?id=1&L=1
7 The WFS URL is not published here due to security reasons.

used 52°North WPS-Workflow modeller (Schaeffer 2007) supports the
automatic creation of such a request and it does not become necessary to
construct WSDLs, describeProcess and deployment descriptor documents
manually. The WPS-T deployProcess operation is successfully invoked
with the request describing the modelled workflow and the process is made
available under the identifier:
org.n52.wps.algorithm.sample.SOSInterpolation.

Figure 12: Basic Model.

In order to finalize the give task, it is necessary to calculate road sections
in highly polluted areas. Therefore, a second workflow is modelled, which
takes the org.n52.wps.algorithm.sample.SOSInterpolation WPS process as
first element in the workflow and thereby incorporates the basic workflow
modelled above. Since the basic workflow is exposed as a simple WPS
process, there is no distinction between this process and any other offered
process. The second process takes GML polygons as input and filters
attributes over a given threshold value. The output contains polygons which
have the specified attribute above the given threshold. As the final step,
these filtered polygons are intersected with road data delivered as GML via
a WFS. As a result, only those road sections inside of a filtered polygon are
returned. These road sections are the road sections in highly polluted areas
and therefore the composite workflow provides a means to generically
solve the given task for any given area.

Figure 13: Advanced Workflow structure.

This final workflow is now ready to be deployed on WPS via the
deployProcess operation analogous to the procedure described for the basic
workflow. Since it is now available as a simple WPS process it can be
executed like any other process. The WPS client developed by 52°North
(Foerster and Schaeffer 2007) provides a means to execute any WPS
process in an easy manner and since it is integrated in uDig, the results can
be visually explored. Figure 14 presents the results as the red colored roads
on the east side of the map visualized in the uDig client.

Aggregated basic workflow
(see Figure 12)

Figure 14: Workflow results (red road layer on the east side).

6. Outlook & Conclusion
The introduced Transactional Web Processing Service approach provides a
highly flexible means to dynamically deploy and undeploy WPS processes
since it can be defined as an extension to the existing WPS specification.
With the specified ability to provide a list of supported schemas in the
service description delivered through the GetCapabilities operation, the
newly introduced operations are not limited to any kind of schema or
deployment information and thus foster reusability and flexibility but still
maintaining interoperability by means of the introduced schema
inheritance. Additionally, this approach blends in the already existing WPS
specification which is also held open in terms of supported schemas and
processing functionality.

The specified BPEL deployment profile as one possible deployment
schema peculiarity in conjunction with the introduced WPS-T was
successfully validated by the presented use case. By providing a fairly deep

insight into the implementation details and the three levels of abstraction, it
was explained how the presented implementation of the BPEL profile can
deal with different BPELEngines in the backend and therefore supports the
easy adoption of changing external conditions.

Reusability of modelled workflows and seamless integration were
focused as the strength of the proposed approach. However, BPEL is only
one possibility and comes along with some challenges for the OGC world
by (Weiser & Zipf 2007) which could be solved in a convenient manner by
the specialized 52°North WPS modeller uDig plugin. Nevertheless, e.g.
WSDL descriptions can be created manually and also used as input along
with a BPEL script. In other words, the proposed extension does not rely on
the 52°North WPS modeller but it provides a convenient means to bridge
the gab between the mainstream IT and the OGC world and automatically
request the WPS-T.

 The applied approach of opaque chaining (Alameh 2003) for the BPEL

profile also indicated an up-to-date unsolved issue of given the client/user a
means to explore the type of offered WPS process and thus transforming
the WPS-T opaque process pattern into a transparent one. Even if the user
is only interested in the results of a process, transparent processes might
help in conjunction with semantic annotation to better choose an
appropriate process and understand the results.

Nevertheless, the presented approach closed the gap of dynamically
deploying processes in a generic but standardized way. This enriched the
WPS idea and prepared it for a broader area of application especially in the
geoprocessing workflow world and thereby for future requirements.

References
Alameh, N. (2003). “Chaining geographic information Web Services”. IEEE Internet

Computing, 7 (5): 22-29.

Alonso, G., Casati, F. and Kuno, H. (2003). Web Services Concepts, Architectures and

Application. Berlin, Springer.

Andrews, T., Cubera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu, K.,

Roller, D. Smith, D., Thatte, S., Trickovic, I. and Veerawarana. S. (2003). Business
process execution language for Web Services [online]. Available from:
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel/ws-bpel.pdf
[Accessed on January 14th 2008].

Bernard, L., Crompvoets, J. and Fritzke, J. (2005): Geodateninfrastrukturen – ein

Überblick. Wichmann, Heidelberg.

Umwelt Bundesamt (BMFU) (2005). Hintergrundpapier zum Thema Staub/Feinstaub

(PM), Berlin.

CAFÉ Working Group on Particulate Matter(Ed.) (2006). Second Position Paper on

Particulate Matter. [online]
http://ec.europa.eu/environment/air/cafe/pdf/working_groups/2nd_position_paper_p
m.pdf [Accessed on January 14th 2008].

Cepicky, J. (2006). Grass goes web: PyWPS. Free and Open Source Software for

Geoinformatics, Lausanne, Switzerland (11-15 September 2006)

Chen, L., Wassermann, B., Emmerich, W. and Foster, H. (2006). Web Service

Orchestration with BPEL [online]. London Software Systems, Dept. of Computer
Science, University College London. Available from:
http://sse.cs.ucl.ac.uk/omiibpel/publications/tut15-emmerich.pdf [Accessed on
January 14th 2008].

Council Directive 1999/30/EC of the European Parliament and of the Council (1999).

Official Journal of the European Union, 22. April 1999, pp. 1-21.

Deutsches Institut für Normung e. V(Ed.) (2006). Feinstaub und Stickstoffdioxid. Beuth

, Berlin.

Ernst, H. (2000). Grundlagen und Konzepte der Informatik. Eine Einführung in die

Informatik ausgehend von den fundamentalen Grundlagen. Braunschweig, Vieweg.

Foerster, T. (2006). An open software framework for web service-based geo-processes.

Free and Open Source Software for Geoinformatics, Lausanne, Switzerland (11-15
September 2006)

Foerster, T. and Stoter, J. (2006). Establishing an OGC web processing service for

generalization processes. ICA workshop on Generalization and Multiple
Representation, Portland (25 June 2006).

Foerster, T., Schäffer, B. (2007). “A Client for Distributed Geo-processing on the
Web”. Lecture Notes in Computer Science (LNCS), vol. 4857, 7th International
Symposium on Web and Wireless GIS (W2GIS 2007), 252-263.

Gamma, E., Helm, G., Johnson, R. and Vlissides, J. (2005). Design Patterns. Reading,

Addison-Wesley.

Gehlot, S. and Verbree, E. (2006). Web-based sharing of a Geo-processing chain:

combination and dissemination of data and services. ISPRS IV Geospatial databases
for sustainable development, Goa.

Gottschalk, K., Graham, S., Kreger, H. and Snell, J. (2002). “Introduction to web

service architecture”. IBM Journal 41(2): 170–177.

Groot, R., McLaughlin, J. (2000). Geospatial data infrastructure: concepts, cases and

good practice. New York, Oxford University Press.

Keens, S. (2007). OWS-4 Workflow IPR. OGC discussion paper, OGC 06-187r1.

Khalaf, R. and Leymann, F. (2003). “On Web Services Aggregation”. B. Benatallah,

and M.C. Shan, eds. LNCS 2819, Berlin Heidelberg: Springer, 1–13.

Kiehle, C. (2006.) “Business logic for geoprocessing of distributed data”. Computers &
Geosciences 32(10): 1746-1757.

Kiehle C., Greve K., and Heier C. (2006). “Standardized Geoprocessing - Taking

Spatial Data Infrastructures one Step Further”. Proceedings AGILE 2006, 273-282.

Kossak, A. (2004). “Straßenbenutzungsgebühren weltweit“. Internationales

Verkehrswesen, No. 56, 246-249.

Masser, I. (2005): GIS Worlds – Creating Spatial Data Infrastructures, ESRI Press,

Redlands

OGC (2007a). OpenGIS Web Processing Service. OGC Implementation Specification

OGC 05-007r7, Open Geospatial Consortium.

OGC (2007b). OpenGIS Geography Markup Language. OGC implementation

specification, OGC 07-036, Open Geospatial Consortium.

OGC (2007c): OpenGIS Web Services Common Specification. OGC implementation

specification, OGC 06-121r3, Open Geospatial Consortium.

ORCHESTRA (2007). “Service Chain Access Service Specification 0.4”. Available
from: http://www.eu-orchestra.org/download.php?file=docs/OA-
Specs/Service_Chain_Access_Service_Specification_v0.4-JRC-IES.pdf [Accessed
on May 4th 2008]

Pelz, C. (2003a). “Web services orchestration and choreography”. Computer , 36 (10),

46-52.

Pelz, C. (2003b). Web services orchestration: A review of emerging technologies, tools,

and Standards, Technical report, Available from: http://xml.coverpages.org/HP-
WSOrchestration.pdf [Accessed 14th January 2008].

Reichert, M. and Stoll, D. (2004). “Komposition,Choreograhpie und Orchestrierung von

Web Services – Ein Überblick“. EMISA Forum, 24(2) 21-32.

Schaeffer, B. (2007). “Integrated Web Geoprocessing Workflow Composition and
Deployment”, Diploma thesis, University of Muenster, Muenster. Available from:
http://v-ebiz.uni-
muenster.de:8083/Schaeffer/DA/Integrated%20Web%20Geoprocessing%20Workfl
ow%20Composition%20and%20Deployment%20-%20Schaeffer.pdf [Accessed on
May 4th 2008].

Schaeffer, B. and Foerster, T. (2007). Bringing the Web Processing Service to a new

stage – new 52°North WPS Features. . Free and Open Source Software for
Geoinformatics, Victoria, Canada (24-27 September 2007)

van der Aalst, W.M.P (2003). „Don’t go with the flow: Web services composition

standards exposed”. IEEE Intelligent Systems, 01 (02) 72-76.

van der Aalst, W M. P., Dumas, M., ter Hofstede, A., Russell, N., Verbeek, H., and

Wohed, P. (2005). “Life After BPEL?” Proc. of the 2nd Int. Workshop on Web
Services and FormalMethods (WS-FM), LNCS 3670, 35–50.

Veerawarana, S., Curbera, F., Leymann, F., Storey, T., Fergusaon, D.F. (2005). Web

Services Platform Architecture: SOAP, WSDL, WSPolicy, WS-Addressing, WS-
BPEL, WS-Reliable Messaging, and More. Englewood Cliffs, Prentice Hall.

Vigna, G. (1997). "Mobile Code Technologies, Paradigms, and Applications", PhD
thesis, Politecnico di Milano, Milano.

W3C (2001). Web Service Description Language (WSDL) 1.1. [online] W3C, Online:

http://www.w3.org/TR/wsdl/ [Accessed on January 14th 2008].

Weiser, A. and Zipf, A. (2007). “Web Service Orchestration of OGC Web Services for

Disaster Management”. J. Li, S. Zlatanova and A.G. Fabbri ,eds. Lecture Notes in
Geoinformation and Cartography Geomatics Solutions for Disaster Management,
Berlin Heidelberg, Springer, 239-254.

Weiser, A., Neis, P. and Zipf, A. (2006). “Orchestrierung von OGC Web Diensten im

Katastrophenmanagement - am Beispiel eines Emergency Route Service auf Basis
der OpenLS Spezifikation“. GIS-Business 9, 35-41.

Wohed, P., van der Aalst, W.M.P., Dumas, M. and ter Hofstede, A.H.M. (2003).

Analysis of Web Services

.

