Distributed Computing with GridGain and UNICORE

Bastian Baranski, baranski@52north.org
January 8, 2010

Contents

1 Introduction 1

2 Prerequisites 1

3 GridGain 2
3.1 Imstallation e 2
3.2 Development 3
3.3 Configuration 4
3.4 Testing L 4

4 UNICORE 5
4.1 Imstallation oL 5
4.2 Development L 5
4.3 Configuration L 6
4.4 Testing o . e e 8

1 Introduction

This document describes how to configure the 52° North Web Processing Service (WPS)! so that
processes could be performed distributed and potentially parallel in a distributed Grid and Cloud
Computing environment either via the GridGain? or the UNICORE? framework.

If you are a beginner in Grid and Cloud Computing and if you are not familiar with the UNICORE
framework, it is strongly recommended to start with the GridGain framework.

If you have any further questions or helpful suggestions, please contact the author of this document
or write a mail to the 52° North Geoprocessing mailing list at

geoprocessingservices@b52north.org

2 Prerequisites

Checkout and compile the current WPS sources from

http://52north.org/svn/geoprocessing/main/WPS/trunk/WPS/

Thttp://www.52north.org/wps
2http://www.gridgain. com
3http://www.unicore.eu

mailto:baranski@52north.org
mailto:geoprocessingservices@52north.org
http://52north.org/svn/geoprocessing/main/WPS/trunk/WPS/
http://www.52north.org/wps
http://www.gridgain.com
http://www.unicore.eu

For more information about building, configuring and creating your own WPS processes please
follow the general WPS installation tutorial at

http://52north.org/download/Geoprocessing/documents/Website/WPS_Tutorial.pdf
In generally, you have to be familiar to some degree with the Java programming language and some

corresponding development tools like Subversion (Version Controlling), Maven (Project Manage-
ment and Build Automation) and Eclipse (Software Development Environment).

3 GridGain

This section describes how to execute your WPS processes on a local cluster by utilizing the
GridGain framwork. GridGain is an open source and Java-based MapReduce implementation.

3.1 Installation

Firstly, you have to setup a local GridGain infrastructure and prepare each node in that infras-
tructure for executing the WPS processes.

Therefore, you have to donwload the GridGain binaries from the project homepage at
http://www.gridgain.com/

Follow the installation instructions at
http://www.gridgainsystems.com/wiki/display/GG15UG/Installation+Instructions

or the fancy and helpful screencasts at

http://gridgain.com/screencasts.html

to setup your local cluster of GridGain nodes.

In most cases the setup process of the GridGain infrastructure is no big deal and typically there is
no complex configuration required. For testing purposes one local running instance of GridGain

is fairly enough, you don’t have to setup necessarily a complete cluster of GridGain nodes.

After setting up the local GridGain infrastructure you have to prepare each node in the infrastruc-
ture for executing the WPS processes. Therefore you have to copy all libraries from the directory

$WPS_WEBAPP/WEB-INF/1ib/ 4
to the directory
$GRIDGAIN_HOME/lib/ext/

on each of the GridGain nodes.

4The $WPS_WEBAPP string either points to the webapp directory of your local WPS installation or to the auto-
matically generated target directory of the 52n-wps-webapp module in the WPS sources. That depends on wether
you use the pre-compiled binaries of the WPS or if you build the WPS binaries directly from the source code.

http://52north.org/download/Geoprocessing/documents/Website/WPS_Tutorial.pdf
http://www.gridgain.com/
http://www.gridgainsystems.com/wiki/display/GG15UG/Installation+Instructions
http://gridgain.com/screencasts.html

© 00~ Ut WN -

This process must be repeated each time you have modified the original source code of the WPS.
If you have many nodes in your local GridGain infrastrcuture, that process could be very time
consuming and should be automated somehow (e.g. with a shell script).

3.2 Development

Secondly, you have to develop an algorithm that could be distributed at a GridGain infrastructure.

The typical development process of such a distributable algorithm is exemplified on basis of the
GridGainSimpleBufferAlgorithm algorithm that is delivered by default with the WPS source
code and that encapsulates the functionality of the classical SimpleBuffer algorithm.

The source code of the GridGainSimpleBufferAlgorithm algorithm is located at
52n-wps-gridgain/src/main/java/org/nb2/wps/gridgain/algorithm/GridGainSimpleBufferAlgorithm. java
The WPS process description of the GridGainSimpleBufferAlgorithm algorithm is located at
52n-wps-gridgain/src/main/resources/org/n52/wps/gridgain/algorithm/GridGainSimpleBufferAlgorithm.
The source code of the encapsulated SimpleBufferAlgorithm algorithm is located at

52n-wps-server/src/main/java/org/n52/wps/server/algorithm/SimpleBufferAlgorithm. java

public class GridGainSimpleBufferAlgorithm extends AbstractGridGainAlgorithm

{

public GridGainSimpleBufferAlgorithm ()
{

}

public List<Map<String , List<IData>>> split (Map<String , List<IData>> inputData)

{
)
}

public Map<String , IData> merge(List<Map<String , IData>> outputData);

{
)
}

super (new org.nb52.wps.server.algorithm.SimpleBufferAlgorithm ());

Listing 1: A brief overview of the GridGainSimpleBufferAlgorithm algorithm.

To develop an algorithm that could be distributed at a GridGain infrastructure you have to proceed
the following steps.

1. Each distributable algorithm is based on a classical algorithm implementation either of the
IAlgorithm interface or the abstract AbstractObservaleAlgorithm. Implement such a
classical algorithm as it is described in detail in the general WPS installation tutorial (e.g.
the SimpleBufferAlgorithm algorithm).

2. Create a new class (e.g. the GridGainSimpleBufferAlgorithm class) that extends the
abstract AbstractGridGainAlgorithm class.

3. In the constructor of the new class (e.g. the GridGainSimpleBufferAlgorithm class) you
have to call the constructor of the superclass with an instance of the previously developed
classical algorithm (e.g. the SimpleBufferAlgorithm class) as an argument.

1

2

3

4. Implement the missing split(...) function. Following the MapReduce®® and Divide and
Conquer” approach, this function splits the (potentially huge) input data set into smaller
chunks, so that several (potentially smaller) parts of the algorithm could be performed
parallel on different nodes in the Grid. If the algorithm cannot or should not be scheduled
in parallel, just return a list with one element (even exactly the normal input data).

5. Implement the missing merge (. ..) function. If smaller chunks of the algorithm are executed
on more then one node in parallel, the resulting data sets have to be merged. If the algorithm
cannot or should not be scheduled in parallel, just return the first element of the argument
(even exactly the one and only resulting data).

6. Create a WPS process description file for the new distributable algorithm. This process
descriptions is most likely very similar to the WPS process description file of the classical
and encapsulated algorithm implementation (just the Identifier element must match the
package and classname of the new class).

However, the new algorithm encapsulates the original functionality of the embedded classical
algorithm (provided by its run(...) method) and could be now distributed at a GridGain
infrastructure. Furthermore, the algorithm could be executed on more than one node in parallel
to increase the computational performance (dependes on the amount of returned elements of the
new split(...) method).

3.3 Configuration

Thirdly, you have to enable the WPS to load your developed process during startup.
Therefore, you have to modify the WPS configuration file located at
$WPS_WEBAPP/WEB-INF/conf/wps_config.xml

By default there is a disabled algorithm repository entry in the WPS configuration file for the
the previously introduced GridGainSimpleBufferAlgorithm algorithm. To enable the GridGain
algorithm repository just uncomment the default entry.

<Repository name="LocalGridGainAlgorithmRepository” className="org.nb52.wps.gridgain
.GridGainAlgorithmRepository”>
<Property name=" Algorithm”>org.n52.wps. gridgain .algorithm .
GridGainSimpleBufferAlgorithm </Property>
</Repository >

Listing 2: The default GridGain algorithm repository entry in the WPS configuration file.

You can load more than one process during startup just by inserting additional Algorithm property
elements pointing to different process implementations.

3.4 Testing
Finally, you have to check if your process implementation and configuration was successful.
One possibility to check if the process implementation and configuration was successful is to exe-

cute the developed process directly from within a Desktop GIS client (e.g. via the uDig 52° North
WPS Plugin as described in the general WPS installation tutorial).

Shttp://en.wikipedia.org/wiki/MapReduce
Shttp://labs.google.com/papers/mapreduce.html
"http://en.wikipedia.org/wiki/Divide_and_conquer_algorithm

http://en.wikipedia.org/wiki/MapReduce
http://labs.google.com/papers/mapreduce.html
http://en.wikipedia.org/wiki/Divide_and_conquer_algorithm

Another solution is to execute the ExecuteTest class that is delivered by default with the WPS
source code and that submits an example WPS Execute request document (for the the previously
introduced GridGainSimpleBufferAlgorithm algorithm) to a defined URL.

The source code of the ExecuteTest class is located at

52n-wps-gridgain/src/test/java/org/n52/wps/gridgain/ExecuteTest. java

The example WPS Execute request document for the exemplified GridGainSimpleBufferAlgorithm
is located at

52n-wps-gridgain/src/main/resources/org/n52/wps/gridgain/ExecuteDocument . xml

Please note, that you have to adjust the URL in the ExecuteTest class to your local environment.
Furthermore, you have to replace the WFES reference URL in the example WPS Execute request
document with an existing WFS. For testing purposes, the author of this document propose to

install locally a simple Geoserver® solution that provides the data that is used in the example
WPS Execute request document.

4 UNICORE

This section describes how to execute your WPS processes on a local cluster by utilizing the open
source and Java-based UNICORE middleware. UNICORE offers a ready-to-run Grid system
including client and server software.

4.1 Installation

Firstly, you have to setup a local UNICORE infrastructure by installing the server components
and the GPE Application Client.

Therefore you have to donwload the UNICORE binaries from the project homepage at
http://www.unicore.eu/

Follow the installation instructions at

http://www.unicore.eu/XXX

and the general tutorials at

http://www.unicore.eu/documentation/

to setup your local cluster of UNCIORE nodes by installing the server components and the GPE
Application Client.

4.2 Development
Secondly, you have to develop an algorithm that could be distributed at a UNICORE infrastruc-

ture.

The typical development process of such a distributable algorithm is exemplified on basis of the
UnicoreSimpleBufferAlgorithm algorithm that is delivered by default with the WPS source code

8http://geoserver.org

http://www.unicore.eu/
http://www.unicore.eu/XXX
http://www.unicore.eu/documentation/
http://geoserver.org

and that encapsulates the functionality of the classical SimpleBuffer algorithm.

The source code of the UnicoreSimpleBufferAlgorithm algorithm is located at
52n-wps-unicore/src/main/java/org/n52/wps/unicore/algorithm/UnicoreSimpleBufferAlgorithm. java
The WPS process description of the UnicoreSimpleBufferAlgorithm algorithm is located at
52n-wps-unicore/src/main/resources/org/n52/wps/unicore/algorithm/UnicoreSimpleBufferAlgorithm. xm]
The source code of the encapsulated SimpleBufferAlgorithm algorithm is located at
52n-wps-server/src/main/java/org/n52/wps/server/algorithm/SimpleBufferAlgorithm. java

To develop an algorithm that could be distributed at a UNICORE infrastructure you have to

proceed the same devlopment steps as describes in detail in the development section of the

GridGain framework (Section 2.2). But you have to create a new class that extends the abstract
AbstractUnicoreAlgorithm class instead of the abstract AbstractGridGainAlgorithm class.

1 | public class UnicoreSimpleBufferAlgorithm extends AbstractUnicoreAlgorithm
2 |{

3 public UnicoreSimpleBufferAlgorithm ()

4|

5 super (new org.nb52.wps.server .algorithm.SimpleBufferAlgorithm ());

6 }

7

8 public List<Map<String , List<IData>>> split (Map<String , List<IData>> inputData)
9| {

10 (...)

11 }

12

13 public Map<String, IData> merge(List<Map<String , IData>> outputData);

14 {

15 (...)

16 }

Listing 3: A brief overview of the UnicoreSimpleBufferAlgorithm algorithm.

However, the development process for embedding existing classical algorithms into distributable
algorithms and for splitting and merging the input and output data are completely equal to the
GridGain framework. That’s why there is actually no additional time and effort required to switch

1

between the GridGain and UNICORE framework.

4.3 Configuration

Thirdly, you have to enable the WPS to load your developed process during startup.

Therefore, you have to modify the WPS configuration file at

$WPS_WEBAPP/WEB-INF/conf/wps_config.xml

By default there is a disabled algorithm repository entry in the WPS configuration file for the
the previously introduced UnicoreSimpleBufferAlgorithm algorithm. To enable the UNICORE

algorithm repository just uncomment the default entry.

<Repository name="LocalUnicoreAlgorithmRepository”
UnicoreAlgorithmRepository”>

className="org.n52.wps. unicore.

<Property name=" Algorithm”>org.n52.wps. unicore.algorithm.

UnicoreSimpleBufferAlgorithm </Property>

<Property name="Registry”>https://localhost:8080/DEMO-SITE/services/Registry?res=

default_registry </Property>

<Property name="Keystore”>/home/username /.gpedunicore/keystore.jks </Property>
<Property name="Registry”>https://localhost:8080/DEMO-SITE/services/Registry?res=

default_registry </Property>

<Property name=" Keystore”>/home/username /. gpedunicore/keystore.jks</Property>
<Property name="Type”>jks </Property>

<Property name=" Alias”>demo user </Property>

<Property name="Password”>unicore </Property>

<Property name=" OverwriteRemoteFile”>false </Property>
<Property name="CompressInputData”>true</Property>
</Repository>

Listing 4: The default UNICORE algorithm repository entry in the WPS configuration file.

You can load more than one process during startup just by inserting additional Algorithm prop-
erty elements pointing to different process implementations.

Furthermore, there is a specific set of properties that must be specified for a successful connection
to a UNICORE installation. The following properties must be defined.

The WPS needs additional information about where to find the UNICORE server installa-
tion. The Registry property points to a UNCIORE gateway.

The WPS needs security information to access a UNCIORE server installation. Typically
a keystore will hold all the certificates you need to access the grid. During the installation
process of the GPE Application Client such a keystore - including all personal and CA
certificates - will be created. The Keystore property points to that keystore.

The Type property specifies the type of the used keystore. During the installation process of
the GPE Application Client the keystore is created automatically and so you typically don’t
have to change the value (”jks” for a Java Keystore) for that property.

The Alias property specifies the alias of your personal certificate. During the installation
process of the GPE Application Client such a certificate is created automatically and so you
typically don’t have to change the value (”demo user”) for that property.

The Password property specifies the password for accessing the keystore. During the in-
stallation process of the GPE Application Client you have to specify the password and so
you typically don’t have to change the value for that property ("unicore” is proposed as the
default password during the GPE Application Client installation process).

Before submitting a job to the Grid, the latest WPS libraries are copied to the home directory
of the Grid user. The OverwriteRemoteFile property defines, if existing remote files will
be overridden. Normally the value of that property should be ’false’. But if you made any
modifications to the WPS source code, you have to set that value to ’true’, so that once the
modified libraries will be updated at the users home directory.

The CompressInputData property defines, if the input data will be compressed before the
submission to each Grid node. Normally the value for that property should be ’true’, but
sometimes (e.g. for testing purposes) it could be helpful to set the value for that property
to ’false’.

The property settings in the default UNICORE algorithm repository entry match the resulting
environment after installing the standard UNICORE server and client components following the
tutorials from the project homepage.

4.4 Testing

Finally, you have to check if your process implementation and configuration was successful.

You have the same possibilities to check if the process implementation and configuration was
successful as described in the testing chapter for the GridGain framework.

The source code of the ExecuteTest class is located at

52n-wps-unicore/src/test/java/org/n52/wps/unicore/ExecuteTest. java

The example WPS Execute request document for the exemplified UnicoreSimpleBufferAlgorithm
is located at

52n-wps-unicore/src/main/resources/org/n52/wps/unicore/ExecuteDocument . xml

Please note, that you again have to adjust your settings in the ExecuteTest class and the example
WPS Execute request document to your local environment.

	Introduction
	Prerequisites
	GridGain
	Installation
	Development
	Configuration
	Testing

	UNICORE
	Installation
	Development
	Configuration
	Testing

