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ABSTRACT This paper reports on multiquadric functions’, a specific type of radial 
basis functions, capablity of estimating daily precipitation on a regional scale. This 
is done with the software package SURFER, Version 6 (Golden Software, Inc. 1995). 
Beforehand, spatial correlation and anisotropy within the data were analysed with 
VARIOWIN 2.2 (Pannatier 1996). A geometric anisotropy along the NE-SW axes 
was identified. Anisotropy was reflected in the interpolation model by anisotropy 
ratios that were associated with the ranges of the directional variogram models. The 
performance of the estimation was assessed by traditional statistical methods. In 
order to highlight possible consequences of errors of decision making, a typecasting 
of errors was carried out by simplified decision rules with relevance to 
environmental objectives.  
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1 Introduction  
In environmental sciences the description of the spatial variability of different parameters 
has been necessary for various issues. To mention some, physical and ecological process 
models often require a spatial pattern of some of the input variables. Furthermore, 
decisions related to the assessment of contamination and the need for remedial actions are 
based on the spatial pattern of the relevant contaminants. However, most of these 
parameters can only be measured at particular spots (e.g. at weather stations, in 
monitoring wells). To receive a spatial distribution interpolation of data from irregular 
networks has to be applied frequently.  
        Spatial interpolation techniques are many and various, but when choosing a method 
the type of surface being interpolated, particularly its smoothness, must be considered 
(Robeson 1997). For interpolating the spatial variation of soil and hydrological attributes, 
there seems to be a tendency in favour of kriging and distance-weighting methods. Radial 
Basis Functions such as thin-plate splines are supposed to be as flexible and as applicable 
as kriging estimators. Although the algorithm is extremely time-consuming for large data 
sets, the method was successfully used to interpolate digital elevation models (Desmet 
1997) and global-scale topography (Robeson 1997).  
        However, interpolation always introduces spatially varying errors that propagate 
through successive models and decisions. For example, Phillips and Marks (1996) 
showed how interpolation errors of temperature, humidity and wind speed propagated in 
a spatially distributed physical evapotranspiration model. Myers (1997) emphasised how 
interpolation errors affected decisions concerning remedial actions. In order to assess the 
reliability of model outputs and decisions, the uncertainty of interpolations has to be 
examined.  
        In what follows investigation of whether multiquadric functions, which belong to the 
group of the radial basis functions, are capable of interpolating daily precipitation data 
throughout Switzerland. The study was done within the framework of the Spatial 
Interpolation Comparison 1997 (SIC97) which means that data from 100 measurement 
sites were interpolated in order to estimate precipitation at another 367 measurement 
locations. After that the observed precipitation amounts at those 367 sites were compared 
to the estimates so that the performance of the interpolation procedures could be assessed.  
        The precipitation data have been related to the Chernobyl Nuclear Power Plan 
accident and to the radioactive plume that crossed Europe in May 1986. Since radioactive 
deposition on the ground mainly depends on rainfall, rainfall fields can help to identify 
possible contaminated areas and associated risks. In order to highlight consequences of 



 170

interpolation errors on decision making, simplified decision rules were used to classify 
observed and estimated data. A comparison of the two classifications showed 
misclassifications and therefore false decisions.  
 
 
2 Methods  
2.1 Interpolation method  
Interpolation of the 100 initial data points was done by the multiquadric function, which 
belongs to the group of the radial basis functions (RBF). These are a diverse group of 
exact interpolation methods that differ according to the chosen basis function. They 
produce a surface that passes as close as possible through the data points and still 
maintains a certain degree of smoothness. The multiquadric function is given by the 
following equation:  

                 (1)  
where Bi(x,y) is the radial function of the distance di(x,y), di(x,y) is the anisotropically 
rescaled, relative distance from the data point (xi, yi) to the interpolation grid node (x, y), 
and R² is a smoothing parameter.  
During interpolation, the basis functions Bi(x, y) for n data points are optimally weighted 
at every grid node by coefficients that are determined by solving a linear equation 
system.  
        In the software package SURFER V. 6.0 (Golden Software, Inc. 1995) anisotropy 
can be considered and a wide range of smoothing parameter R² can be chosen. In order to 
examine spatial anisotropy the data were analysed in VARIOWIN 2.2 (Pannatier 1996). 
Experimental variograms were calculated omnidirectional and in the four cardinal 
directions. All the variograms were fitted by a spherical model with the parameters listed 
in Table 1. The ranges of the variogram model changed considerably depending on the 
direction while the sill remained constant. Such anisotropy type is referred to as a 
geometric anisotropy.  
        Once anisotropic structures are identified, they should be included in the 
interpolation model. Since the ratios of the ranges of the directional variograms yielded 
anisotropy-ratios up to 4 along the NE-SW axis, three approaches - MQ1, MQ2 and MQ4 
- were distinguished by anisotropy-ratios in 45° direction of 1 (no anisotropy), 2 and 4, 
respectively (Table 2). Additionally, the radii of the search ellipse were adapted. 
   

Table 1  Parameters of the variogram fitting in VARIOWIN 2.2. 
Direction Variogram Model Nugget Sill Range Goodness of fit 

omnidirectional Spherical 280 14 000 76 000 0.0410 
0° (N-S) Spherical 2660 14 000 64 000 0.2120 

45° (NE-SW) Spherical 280 14 000 210 000 0.0249 
90° (E-W) Spherical 1680 14 000 109 800 0.1314 

135° (SE-NW) Spherical 1260 14 000 58 000 0.2367 
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Table 2  Parameters for the anisotropy and the search ellipse used in all interpolations. 

# Anisotropy-
Ratio 

Anisotropy-
Angle 

Search-
Type 

Max 
Data 

Min 
Data 

Search-
Radius 1 

Search-
Radius 

2 

Search-
Angle 

MQ1 1 - Simple 24 5 210 000 58 000 45° 
MQ2 2 45° Simple 24 5 210 000 58 000 45° 
MQ4 4 45° Simple 24 5 210 000 58 000 45° 
 
        A more crucial parameter is the smoothing parameter R². Unfortunately, there is no 
universally accepted method for computing its optimal magnitude. The program 
SURFER provides a figure for R² which is between the average sample spacing and one-
half the average sample spacing. Since it may influence the results seriously, 
interpolations in which R² ranged from 0 to 5.0E09 were carried out and the resulting 
contour lines were compared by eye. Scenarios where considerable changes occurred 
were then examined in more detail by cross validation. The cross validation results were 
statistically assessed (see below), and the amount for R² that yielded the best results was 
chosen for each MQ-approach to estimate the data at the 367 additional measurement 
sites.  
 
2.2 Methods for assessing performance of an interpolation model  
By subtracting an observed value from an estimate at a given location magnitude, sign 
and classification of the estimation error are determined. Observed and estimated values 
can be obtained in two different ways: First, by cross validation, which means that each 
sample location is successively removed from the original data set and that its value is 
estimated from the remaining sample locations. At additional measurement sites (that 
were not involved in the interpolation process), however, the observed amounts can be 
compared directly to the estimates from the interpolation.  
        Since no interpolation model is likely to perform best for all locations, statistical 
criteria against which the overall performance is measured are needed. For example, the 
mean bias error (MBE), which indicates a bias in estimation when it is nonzero, is 
calculated with equation 2. Furthermore, the summary statistics of the root mean squared 
error (RMSE), the mean absolute error (MAE) and the mean relative error (MRE) given 
by the equations 3, 4 and 5, respectively, incorporate bias and spread of the errors.  

Mean Bias Error: MBE =                                  (2)  

Root Mean Squared Error: RMSE =            (3)  

Mean Absolute Error: MAE =                            (4)  

Mean Relative Error: MRE =                             (5)  

where: n number of rain gauge, Pi observed rainfall at rain gauge i, and  estimated 
rainfall at rain gauge i.  
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        Since good estimations of rainfall fields can help to identify areas possibly 
contaminated by (radioactive) deposition, the performance of estimation was also judged 
with regard to risk analysis and decision making. Thus, it was examined how well the ten 
highest and the ten lowest rainfall data of the whole data set (467 data) were estimated by 
the methods applied. Both, the precision of the spatial location and the accuracy of the 
precipitation amounts were considered. 
        In addition, an approach of typecasting of errors following Myers (1991, 1997) was 
carried out, which allows us to compare different estimators based on environmental 
objectives. Decisions, whether certain measures will be introduced or not, are often 
related to thresholds or action levels. Therefore, observed and estimated data were 
classified with simplified decision rules. For example, in the case of radioactive fallout 
people could be warned to harvest garden fruits and vegetables and to put cows out to 
pasture, if precipitation and thus the contamination of an area exceeded a given threshold. 
1. "Immediate measures", such as prohibition of putting livestock out to pasture along 
with a sophisticated monitoring program in dairies could be introduced if precipitation 
was even above a certain threshold 2. For a virtual case study, it was assumed that areas 
where rainfall was below 2 mm had not been affected by fallout so that no measures had 
to be introduced. On the other hand, areas which had received 40 mm daily rainfall or 
more should have been chosen for "immediate measures". In such a decision process 
interpolation errors propagate and might cause misclassifications and, therefore, false 
decisions. Figure 1 shows a misclassification ellipse and the typecasting of errors for 
decisions that are related to two threshold concentrations indicating different action 
levels. If the estimated concentration exceeds the threshold concentration although the 
actual value falls below that threshold, an error of type I or false positive results. An error 
of type II (false negative) appears when the estimated value is below the threshold 
concentration, but the true concentration is above.  
        This approach is highly effective in conjunction with cross validation in order to 
find optimal interpolation parameters for performance-based goals (e.g., Myers 1997). In 
what follows, this procedure was also used to compare observed and estimated 
precipitation at the 367 additional measurement sites.  
 
   

 
 

Figure 1  Misclassification ellipse for two thresholds (derived from Rendu 1980) and typecasting of errors 
(derived from Myers 1991). 
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3 Results and discussion  
3.1 Assessment and optimization of interpolation by cross-validation  
Since associated parameters of an interpolation method like the smoothing parameter R² 
in the multi-quadric function may influence the results seriously, these parameters should 
be optimized before the final estimation is done. Therefore, interpolations with R² 
ranging from 0 up to 5.0E09 were carried out and the resulting contour lines were 
compared by eye. Interpolation results remained rather constant from R² = 0 to R² = 500 
000, but altered from R² > 500 000 onwards in all three cases (MQ1, MQ2, and MQ4). 
Therefore cross validation was performed considering the following values for R²: 0, 
4.75E06, 1.37E07, and 4.96E07. The last three figures were suggested by the software 
package as reasonable values for the case MQ4, MQ2, and MQ1, respectively.  
        The statistics of the estimates and the residuals from the cross-validation processes 
are summarized in Table 3 and Table 4. They revealed that minimum and maximum 
precipitation amounts were over- or underestimated, respectively, and that the standard 
deviation of the estimates was narrower than that of the observed data (Table 3). The 
higher the R², the closer the maximum values and the standard deviations were to the 
observed ones. However, the statistics of the residuals (Table 4) showed that the residuals 
increased when R² was enlarged and so did the RMSE and the MAE. Only the MRE 
behaved contrarily. The nonzero means indicated a bias in the estimations.  

   

Table 3  Statistics and classification errors of the observed precipitation [1/10th mm] and the estimates 
from the cross validation procedures at 100 measurement sites. 

# R² min max mean median standard-
deviation

BB-1 I-1 II-
1 

AA-
2 

I-
2 

II-
2 

observed -  10 585 180.2 141 116.7 4 - - 4 - - 
MQ1 0 15 454 182.0 142 98.0 0 4 1 0 1 4 
MQ1 4 750 000 16 465 182.3 142 101.2 0 4 1 0 1 4 
MQ1 13 700 000 16 471 182.4 139 103.1 1 3 1 0 1 4 
MQ1 49 600 000 14 480 182.5 137 106.6 1 3 1 0 1 4 
MQ2 0 11 444 181.7 146 100.9 0 4 1 0 1 4 
MQ2 4 750 000 12 457 181.9 139 104.1 0 4 1 0 3 4 
MQ2 13 700 000 13 464 182.0 140 106.0 0 4 1 0 3 4 
MQ2 49 600 000 16 475 181.7 138 109.4 0 4 1 0 3 4 
MQ4 0 14 422 181.1 147 101.5 0 4 1 0 4 4 
MQ4 4 750 000 15 438 181.4 141 105.5 0 4 1 0 4 4 
MQ4 13 700 000 15 457 181.5 143 108.1 0 4 1 0 4 4 
MQ4 49 600 000 12 501 181.1 143 113.8 0 4 2 0 4 4 
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The increasing anisotropy ratios in the approaches MQ2 and MQ4 yielded lower 
minimum and maximum errors, RMSE, and MAE than MQ1. None of the approaches 
was capable of estimating an adequate amount at the sites where precipitation fell below 
threshold 1 or exceeded threshold 2  (Table 3). Consequently, classification errors of type 
I and II occurred. Although the approach MQ4 yielded the lowest amounts for RMSE and 
MAE in comparison to MQ2 and MQ1, it caused more misclassifications, particularly at 
the second threshold. This demonstrates that certain measures for performance highlight 
different aspects so that a single measure is not sufficient. To summarize, it seemed 
reasonable to apply each of the approaches (MQ1, MQ2, and MQ4) with a smoothing 
parameter of R² = 0 to estimate precipitation at the 367 additional locations. 

  
3.2 Comparison between estimated and actual precipitation at additional measurement 
sites  
3.2.1 Assessing performance by statistical criteria  
Contour maps of the rainfall throughout Switzerland on 8th May 1986 were drawn from 
the three interpolation approaches MQ1, MQ2 and MQ4 with the parameters summarized 
in Table 2, with R² = 0, and based on 100 observed precipitation data (Figure 2). In all 
cases precipitation ranged from 0 mm in the east to 50 mm in the south-west. The higher 
ratio of anisotropy in MQ4 caused rainfall fields to be more extensive along the NE-SW 
axis and smaller in SE-NW direction than in the cases MQ2 and MQ1.  
        These three interpolation approaches were also used to estimate precipitation at 
another 367 sites. An estimator that performs well yields a distribution close to the 
original sample distribution. Statistics of the observed and estimated precipitation at these 
additional measurement sites are shown in Table 5. The estimated minimum precipitation 
generally exceeded the observed value of 0 mm. The observed maximum precipitation of 
51.7 mm was underestimated by all approaches. The mean of the MQ1 and MQ2 
estimates stayed below the observed mean while the mean produced by MQ4 matched 
accurately. In all approaches the median of the estimated values was higher than the 
observed one. Standard deviations were narrower in the estimated values than in the 
observed, which is a typical effect owing to smoothing inherent in the interpolation 

Table 4  Statistics of the residuals from the cross validation procedures. 
# R² min max MBE RMSE MAE MRE [-] 

MQ1 0 -307 165 2.9 69.4 46.3 0.48 
MQ1 4 750 000 -305 174 2.1 69.8 46.4 0.47 
MQ1 13 700 000 -304 182 2.2 70.3 46.7 0.46 
MQ1 49 600 000 -300 199 2.3 72.1 48.2 0.46 
MQ2 0 -268 149 1.6 63.6 43.8 0.44 
MQ2 4 750 000 -267 155 1.8 64.6 43.8 0.42 
MQ2 13 700 000 -266 158 1.8 65.6 44.2 0.41 
MQ2 49 600 000 -271 163 1.6 68.4 45.7 0.41 
MQ4 0 -241 143 1.0 59.5 42.4 0.41 
MQ4 4 750 000 -242 160 1.3 62.1 43.3 0.40 
MQ4 13 700 000 -243 179 1.3 64.8 44.9 0.40 
MQ4 49 600 000 -281 223 0.9 72.6 50.4 0.44 
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procedure.  
   

Table 5  Statistics of the observed and the estimated precipitation [1/10th mm] at the 367 
additional measurement sites. 

Statistics min max mean median standard 
deviation 

observed  0 517 185.4 162 111.2 
MQ1, R² = 0 14 484 181.8 163 95.8 
MQ2, R² = 0 17 476 183.4 168 98.9 
MQ4, R² = 0 19 491 185.1 165 101.4 

   
   

MQ1 
 

MQ2 

MQ4 

Figure 2  Contours of precipitation [1/10th mm] 
on 8th May 1986 as well as the sites with the ten 
highest and the ten lowest amounts in the 467 
observed data (  and  , respectively) and in the 
367 estimates added to the 100 field data used for 
interpolation (  and , respectively). 

 
        Scatter plots of observed versus estimated precipitation (shown in the left side of 
Figure 3) enable us to investigate conditional bias in the interpolation models. A perfect 
estimation would result in a 45° line where actual and estimated values match exactly, 
but in practice a cloud of points appears instead. Increasing anisotropy ratios in the 
interpolation models resulted in a slightly narrower distribution along the 45° line. 
However, still few, but high outliers also remained in case MQ4.  
        The right side of  Figure 3 shows residuals as a function of the observed values. This 
is another visual method for investigating conditional bias or correlation of errors. In 
unconditional unbiased estimations, the errors should plot both above and below the 
horizontal zero line in roughly equal magnitude. For the three interpolation approaches 
applied here low observed precipitation tended to be slightly overestimated, whereas the 
estimates of the highest precipitation were far too low. This was a result of the smoothing 
effect inherent in the interpolation models. However, the overestimation of low 
precipitation depths slightly increased, the higher the anisotropy ratio in the interpolation 
model was. On the contrary, the magnitude of residuals at high observed precipitation, 
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slightly decreased and generally the spread of errors also declined. On the whole, 
estimation errors tended to correlate with the observed precipitation in all approaches.  
 

MQ1 
 

MQ2 

 

MQ4 
 

Figure 3  Scatter plots with 367 precipitation data [1/10th mm].   
Left: Estimated versus observed precipitation. 

Right: Observed precipitation versus residuals (estimation - observation). 
 

        Quite a number of residuals amounted up to +/- 10 mm. Considering that the mean 
observed precipitation was about 18 mm, such estimation errors are rather high. While 
only one positive error of more than 20 mm occurred, several negative residuals of the 
same magnitude appeared especially where the observed precipitation exceeded 35 mm.  
       Figure 4 shows how the residuals were distributed in space. In areas where the 
interpolation models were supported by evenly scattered measurement sites and in areas 
where rainfall altered continuously in space, the estimation errors were low. This could 
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be found in the northern part of the investigation region. However, all of the three 
approaches failed to predict precipitation that changed rapidly in space. For example, the 
location where the highest positive error of about 30 mm appeared was surrounded by 
sites where much higher precipitation was observed so that this local minimum was not 
estimated well.  
        High over- and underestimates showed a clustered pattern. These clusters mainly 
occurred in areas where the interpolation was not or was only sparsely supported by data 
points. Areas that had received high precipitation were not identified when none of the 
data from that cluster was included in the interpolation process. On the other hand, data 
with very high precipitation amounts partly caused considerable overestimation in their 
surroundings.  
        The overall performance can be assessed by MBE, RMSE, MAE and MRE (Table 
6). The MBE were negatively biased which was mainly due to the large negative 
estimation errors. MBE decreased in MQ4 as a result of a few higher overestimates at 
low precipitation values in comparison to MQ1 and MQ2. RMSE as well as MAE 
decreased in relation to the anisotropy ratio in MQ1, MQ2 and MQ4. In general, the 
amounts of RMSE (5.3 to 5.6 mm) were higher than the values of MAE (3.7 to 3.9 mm) 
because the RMSE is more sensitive to high residuals. MQ2, followed by MQ4 and 
MQ1, performed best, but a MRE of 37 % still remained.  
        Owing to a better consideration of the anisotropy detected by spatial data analysis, 
MQ2 and MQ4 yielded better results than MQ1. It has to be concluded that pre-
modelling is an approach to improving interpolation models. However, the overall 
performance remained rather poor. 
    

Table 6  Summary statistics of the observed and estimated precipitation data at the 367 additional 
measurement sites.  

# MBE [1/10th mm] RMSE [1/10th mm] MAE [1/10th mm] MRE [-] * 
MQ1, R² = 0 -3.6 55.7 38.8 0.38 
MQ2, R² = 0 -1.9 53.1 36.7 0.37 
MQ4, R² = 0 -0.3 53.3 37.3 0.45 

(*: At five measurement sites no precipitation was observed. Since this caused a division by zero, these sites were neglected in MRE.) 
   
 3.2.2 Performance of estimating the ten highest and the ten lowest precipitation amounts  
In Figure 2 squares and circles indicate the locations of the ten highest and the ten lowest 
precipitation amounts, respectively. The sites related to the estimated values are drawn by 
filled symbols and include the 100 data that were used for the interpolation. These 100 
field data included three out of the ten highest amounts in the whole data set and one out 
of the ten lowest data.  
        The highest estimates were mainly located in the neighbourhood of the precipitation 
site where 58.5 mm was observed, while the lowest estimates almost entirely appeared in 
the eastern part of Switzerland. Table 7 summarises the number of matched locations, 
which are locations where both, actual data and estimates, belonged to the ten highest and 
the ten lowest amounts in the 467 data. Additionally the ranges of the precipitation 
amounts are given. The ranges of the highest and lowest estimates were of the same order 
of magnitude in the observations and in the three interpolation models. There was a shift 
towards higher precipitation from MQ1 to MQ4 according to the anisotropy ratios. 
However, none of the interpolation models succeeded in identifying the clusters of high 
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precipitation in the middle of the investigation area since no data from there had 
supported the interpolation. 
 

MQ1 MQ2 

MQ4 

Figure 4  Proportional residuals (estimation - 
observation) of precipitation on 8th May 1986: ∆ : 
positive, ∆ : negative errors [1/10th mm]. 

 
   

Table 7  The number of matched locations (both, actual data and estimates, belong to the ten 
highest and the ten lowest data in the 467 data) and ranges of the ten highest and the ten lowest 

precipitation amounts.  
  10 lowest precipitation data 10 highest precipitation data 
  matched locations precipitation  

[1/10th mm] 
matched locations precipitation  

[1/10th mm] 
observed 10 0 .. 10 10 434 .. 585 
MQ1 4 10 .. 24 4 398 .. 585 
MQ2 4 10 .. 20 4 440 .. 585 
MQ4 2 10 .. 31 4 446 .. 585 

 
3.2.3 Performance of estimating precipitation amounts P ≥ 40 mm and P ≤ 2 mm  
As outlined above data that exceeded P = 40 mm were supposed to indicate a need for 
"immediate measures", whereas areas where precipitation fell below P = 2 mm would 
receive no measure at all (see Figure 1). With these simplified decision rules observed 
and estimated precipitation data were classified into three groups. Owing to interpolation 
errors different numbers and types of true and false decisions occurred (Table 8). Their 
spatial location is shown in Figure 5. The total number of sites where precipitation fell 
below threshold 1 and exceeded threshold 2 was lower in the estimated sets than in the 
observed one due to smoothing through the interpolation processes. While in case MQ1 
both classes (P ≤ 2 mm, P ≥ 40 mm) were equally filled, there was a shift towards fewer 
numbers below threshold 1 and more above threshold 2 in MQ4. 
 



 179

    
 
 

Table 8  The number and types of true and false decisions at the two 
thresholds.  

  Threshold 1: P ≤ 2mm Threshold 2: P ≥ 40 mm 
  Type I Type II BB Type I Type II AA 
Observed - - 18 - - 22 
MQ1, R² = 0 11 1 7 2 15 7 
MQ2, R² = 0 10 2 8 4 12 10 
MQ4, R² = 0 14 1 4 7 11 11 

   
   

MQ1 
MQ2 

MQ4 

Figure 5  Contours of precipitation [1/10th mm] on 8th 
May 1986 and classification of precipitation with 
threshold values. Symbols: Estimated P ≥  40 mm:  ; 
Observed P ≥  40 mm:  ; Estimated P ≤  2 mm:  ; 
Observed P ≤  2 mm:  . 

 
 
 
Moreover, an increasing anisotropy ratio caused more false positives (Error Type I) at 
both thresholds and less false negatives (Error Type II) at the second threshold. At 
threshold 1 right decision (BB) decreased, but increased at threshold 2 (AA). This 
approach thus shows the bias and smoothing within the estimators in a simple manner. 
Nevertheless, this technique functions well to evaluate interpolation results in the 
framework of decision making. The interpolation model that succeeded in providing the 
most accurate decisions would be chosen in practice.  
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4 Conclusions  
Altogether, the approach MQ2 provided the best estimates of precipitation at the 367 
additional measurement sites. Owing to the better consideration of anisotropy, both MQ2 
and MQ4 yielded better results than MQ1. Therefore, it has to be concluded that spatial 
data analysis and consideration of anisotropy can improve interpolation results with the 
multi-quadric function. However, the overall performance is poor. The multi-quadric 
function was rarely capable of estimating precipitation that changed rapidly in space as it 
occurs in daily rainfall fields in mountainous regions. Particularly the performance of 
estimating high precipitation amounts was rather poor. The smoothing effect inherent in 
the interpolation procedure caused a biased estimation in which low precipitation data 
were overestimated and high precipitation data were clearly underestimated. In the case 
of a nuclear accident rapid and reliable estimations are needed especially to recognize 
areas that have received high precipitation. Since this target is badly met by the 
approaches shown in this paper, it has to be concluded that they should not be applied to 
estimate heterogeneous rainfall fields.  
        Since residuals from the cross validation processes also revealed the weak points of 
interpolations with the multi-quadric function, this technique can be used to optimize the 
interpolation model and to provide some measure for the uncertainty of the interpolation. 
For example, the mean relative error could be imposed on the estimates. However, it 
should be noted that the RMSE, the MAE and the MRE calculated from the residuals 
from the cross validation processes were higher than the corresponding amounts from the 
residuals at the 367 additional measurement sites. That means that the uncertainty of the 
interpolation tends to be overestimated when it is solely derived from cross validation 
results. Nevertheless, this procedure can be used for the optimization of interpolation 
with regard to the choice of the basis function, the parameter R², anisotropy and search 
parameters. Regions where high residuals and misclassifications still remain should be 
suggested for additional field sampling.  
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