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ABSTRACT This paper demonstrates the use of dynamic fuzzy-reasoning-based 
function estimator (DFFE) to interpolate rainfall data in a case study in 
Switzerland. The functional parameters are also optimized by genetic algorithms 
(GA). The procedure operates on a series of overlapping partition surfaces around 
the study area based on expert knowledge and interpretive judgment. The 
procedure allows for spatial interpolation and extrapolation in a higher-dimensional 
space.  
KEYWORDS: spatial interpolation, fuzzy approximate reasoning, genetic algorithms, 
overlapping partition surface, defuzzification.   
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1. Introduction  
 
In much science and engineering practice today, there is an increasing demand for 
techniques which are capable of interpolating irregularly scattered data distributed in 
space. These techniques have many applications including rainfall estimation. 
Mathematically, the general model for spatial interpolation of values z in a surface R can 
be expressed as:  

 
where (x, y) is a coordinate location and v1, ..., vn are additional variables with n1.  
 
        There are several interpolation models for solving the above problem. Techniques 
such as geostatistical co-kriging (Journel and Huijbregts, 1978) and artificial neural 
networks (Hornik et al. 1987) are common. The former requires the structural modelling 
of direct-variograms and cross-variograms. The deficiencies of this model are: (1) it is 
difficult to fit a model to the experimental variograms (Ahmed and Marsily, 1989); and 
(2) the higher the dimensions of the data vector v, the more variograms are required. The 
latter artificial neural network methods, such as backproprogation neural networks, 
provide a model- free environment to develop a so lution and are more efficient in terms of 
data requirements. However, with this approach, the user must define a network 
architecture that generally requires a large data set of past observations of system 
behavior.  
        Zeng and Singh (1996) used fuzzy logic to emulate the flexibility of human 
reasoning processes and to draw conclusions from imprecise and incomplete information, 
thus "capturing the richness of natural language". This method of reasoning is known as 
fuzzy approximate reasoning, which is  a rule-based system of inference in which a fuzzy 
conclusion is deduced from a collection of fuzzy premises. The reasoning is robust within 
certain ranges, so it is very suitable for representing uncertain knowledge (Kasabov, 
1996). Using fuzzy modelling, we can model highly complex nonlinear systems, such as 
multi- input and multi-output problems.  
        Recently, some researchers have opted to partition surface (region) reconstruction 
into a set of independent surface (no overlapping partition) generation processes based on 
unique thematic regions, subsequently splicing the set of resultant surfaces back into an 
overall composite (Sinclair and Vallee, 1994). That is, spatial interpolation of the value zi 
in i-th surface Ri can be expressed as:  

 
and,  

 
where m is the number of partition surfaces and it represents an empty set.  
        Bartier and Keller (1996) opted to modify the univariate inverse distance weighted 
(IDW) interpolation technique to become multivariate. They specified a transition matrix 
between 0 and 1 for independent surface change going from one surface to another. In 
this situation, it would be reasonable for the surface to show limited continuity, rather 
than a sudden break across the boundary.  
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        In practice, the boundaries of surfaces are overlapping, which is desirable to 
incorporate interpretive knowledge with some uncertainty. That is:  

 
        With regards to this problem, we use a dynamic fuzzy-reasoning-based function 
estimator (DFFE) model proposed by Sun and Davidson (1996) with parameters 
optimised by genetic algorithms (GA). In this paper, we will first review the basics of the 
DFFE model. We will then demonstrate its use in a rainfall case study using a three- input 
and one-output DFFE model. The three inputs are coordinate location (x, y), the digital 
elevation model (DEM) data v, and the output is rainfall value z.  
 
2. DFFE Revisited  
The dynamic fuzzy-reasoning-based function estimator (DFFE) was proposed by Sun and 
Davidson (1996). This method starts with the simple concept of interpolation and 
extrapolation for estimating a function value when certain geometric conditions, 
"parallel" and "close", are satisfied completely. However, the fuzzy-reasoning component 
extends the extrapolation and interpolation using no nlinear weightings for the 
neighbouring values based on closeness and the directions of the deviation vectors, as a 
way to mimic human reasoning. Such fuzzy concepts therefore can tolerate partial 
satisfaction of the preconditions and take into account the discrepancy in inferring the 
function values. It is also an assumption-free, model- free and exact interpolator.  
        Figure 1 shows the architecture of the DFFE. It is composed of a case base of past 
observations, a dynamic knowledge base creator, a fuzzy-reasoning mechanism and an 
explanation mechanism. When a new input vector is defined, past observations which are 
similar to the input vector are selected and used to build a knowledge base which consists 
of a set of fuzzy rules and related truth values. A fuzzy reasoning mechanism is used to 
infer the response of the system. The explanation mechanism saves the latest rules and 
truth-values so as to be able to answer questions about the response.  

 
Figure 1  The structure of DFFE. 

 
        A typical DFFE model uses two geometric functions: "close" and "parallel". The 
functions are usually implemented in terms of fuzzy membership functions. The 
"parallel" function can be defined as:  

 
where is µathe fuzzy membership value of the fuzzy set A which is the cosine of the 
spatial angle between the deviation vector of the new data point from the reference data 
point (the closest point to the new data point) and the deviation vector of a neighboring 
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data point from the reference data point. The parameter a is the only parameter in the 
membership function, and is usually determined by trial-and-error or cross-validation. 
The "close" function can be defined as:  

 
where µβ€€ is the fuzzy membership value of the fuzzy set D which is the distance 
between the new data point and the reference point, and b is the parameter in the fuzzy 
membership function. Of course, other types of fuzzy membership functions are possible.  
 
3. Optimisation of DFFE using Genetic Algorithms   
The use of DFFE requires the estimation of the parameters a and b in the two fuzzy 
membership functions. This paper uses genetic algorithms to optimise the functional 
parameters. Genetic algorithms (GAs) were first introduced in the field of artificial 
intelligence by Holland (1975). These algorithms mimic processes from the Darwinian 
theories of natural evolution in which winners survive to reproduce and pass along the 
"good" genes to the next generation, and ultimately, a "perfect" species is evolved. Hence 
the term "genetic" was adopted as the name of the mathematical algorithms. Figure 2 
shows the architecture of the modified DFFE model. The computer implementation of 
binary GAs can be found in Huang et al. (1998).  

 
Figure 2  The structure of the modified DFFE.  

 
        To make a prediction, the selection of neighbouring data points is important. In this 
paper, we use a manual or expert-derived partition of the study area into several 
overlapping surfaces to define the neighbouring points instead of applying a search 
radius. This means that all of the data in a sub-region are the neighbouring points. The 
GA-optimised DFFE model (ODFFE) is implemented in two steps:  
 
(1) Optimise both "parallel" and "close" fuzzy membership functions (FMF) using 
neigbouring data points on each partition surface. Assume that there are ni samples in 
the ith sub-region. We simply use the leave-one-out method to optimise both "close" and 
"parallel" fuzzy membership functions. The fitness function of GA for this problem can 
be defined as follow:  

 
and,  
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where  is the sum of squared errors on the observed output data  and the model 

predictions  obtained from DFFE. The higher the  value, or the lower 

the , the better the solution. We repeat the above operation until the maximum 
number of generations is reached. The parameters a and b are thus optimised.  
(2) Defuzzification of the estimation values within more than one sub-region. Let the 

coordinate of the new data point to be estimated as , where 2 <= s <= 
m,  j >=1, then there is an estimation value in each overlapping sub-region, to be the total 
of s values. These values consist of a fuzzy set. Defuzzification is the process of 
converting a fuzzy set into a single value that, in some sense, is the best representation of 
the fuzzy set. The defuzzification scheme is:  

 

where  is the final estimate of the new data point. We use the optimised fitness 

values  in overlapping sub-regions as membership values. More details are given 
in Filev and Yager (1991).  
 
4. Case Study  
4.1 Data Source  
The available data set is from the AI-GEOSTATS mailing list in Italy (Dubois, 1997). 
They reported measurements of 467 daily rainfall made in Switzerland on the 8th May 
1986. The data set consists of 100 data for training, and the remaining 367 data for 
testing. The two factors controlling rainfall measurements are: (1) 2D coordinate position 
(x, y); and  (2) digital elevation model (DEM) data (v). In this paper, we use {x, y, v} as 
the input data and z (rainfall) as the output data. Partition of the whole surface is based on 
{x, y, z} data.  
 
4.2 Procedure  

Step 1. Partition of the region  
The first step is to partition the whole region into overlapping sub-regions based on the 
observed 100 data points {x, y, z}, and then to generalise the distribution in each sub-
region to predict using the ODFFE. General speaking, the partition for the larger scale 
region is necessary in order to reduce over smooth of the estimation values. Because 
there are no standard methods on how to partition the whole region, the subjective 
method using fuzzy boundaries (overlapping sub-regions) should be reasonable.  
        In this study, we divided the whole region into five overlapping sub-regions. Figure 
3 shows the result of the partition. Each of the observed and the estimated data  belongs 
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to at least one sub-region. Note that any polygonal shapes can be used. This is a flexible 
way to incorporate expert knowledge in spatial modelling.  
 
 

 

Figure 3  Five overlapping polygons for defining five sub-regions. The "." represent the observed data 

points and the "+" represent the to be estimated data points. 
 
Step 2. Optimisation of the "close" and "parallel" geometric functions  
The next step is to estimate the parameters a and b in the fuzzy membership functions in 
each sub-region. The configuration employed in the GA is shown in Table 1.  
   

Table 1 The configuration of the GA used.  
Population 50 
Fitness function Equation (7)  
Encoding scheme Binary 
Parameters to be optimised a, b in equations (5) and (6)  
Bit-string for each parameter 24  
Ranges of each parameter a[1, 100], b[1, 500]  
Two-point crossover probability 0.6  
Mutation probability 0.003  
Number of generations 5000  

 
 
Step 3. Rainfall prediction  
The last step is prediction. As mentioned earlier, a data point to be estimated can belong 
to more than one sub-region. Hence, a defuzzification algorithm (Equation 9) is 
employed to yield a prediction.  
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4.3 Results and Discussions  
The estimation values were computed by a DFFE code developed by the authors. The 
DFFE code was written using Microsoft Visual C++ on Windows NT/95 platform. Figure 
4 shows a scatter-plot of the estimations versus the true values at the 367 locations. The 
R2 was 0.67. The statistics of all the estimated values are tabulated in Table 2. As shown 
in this table, the statistics of the predictions and the true values are very similar, except 
for the maximum value areoverestimated. This means the overall performance of the 
model was good.  

 
Figure 4  Scatter-plot of the 367 actual values and predictions 

   
   

Table 2  Comparison of the statistics of the 367 data  
 Min Max Mean Median  Standard deviation 
True values  0 517  185.4 162.0 111.2  
Estimates 0.9 595.6  188.0 163.1 111.3  

   
Table 3   Comparison of the statistics of the 10 extreme true and estimated values.  

 Lowest Highest  
 True values Estimates True values Estimates 
Minimum 0.0 0.9 426.0 173.7 
Maximum 13.0 86.4 517.0 575.9 
Mean 3.3 14.3 455.7 335.3 
Median 0.5 5.0  439.0 311.3 
RMSE 4.3 24.5 21.3 115.1 

         
Table 3 provides the statistics of the 10 extreme values. The performance of the 

10 lowest estimated values could be acceptable except fo r the presence of one data point, 
which had an estimated value of 86 but a true value of 0. This dramatically increases both 
the mean and the RMSE of the estimation. The performance of the 10 largest estimated 
values was not acceptable. It overestimated the maximum value and underestimated the 
minimum value.  
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Table 4 Error measurements of the 367 data.  
 Actual error Absolute error Relative error (%)  Error square  
Minimum 210.3 0.0 0.0 0.0 
Maximum -252.3 252.3 613.8 63634.0 
Mean 2.6 48.9 37.8 4532.9 
Median 5.0 34.5 23.1 1187.6 
   
         

Table 4 shows the performance of the method in terms of various error measures: 
actual error (estimates minus true values), absolute error, relative error, and error square. 
The RMSE was 67.3. All the mean errors were large, except the actual error. This shows 
that there was no significant bias in the estimator. The same message can be 
demonstrated in Figures 5 and 6. In Figure 5, there is no clear correlation of the actual 
error and the true values. Figure 6 shows that the error distribution was approximately 
normal with mean value centred around the zero point. In other words, they were 
independent. Figures 7 and 8 also show the rainfall predictions and their error values at 
the 367 locations. Figure 8 shows that there is no significant trend to the spatial 
correlation of the error values.  

 
 

 
Figure 5   The results of the bias  in errors and correlation of errors 
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Figure 6  Histogram of estimation errors (estimates minus true values) 

 
        The overall performance of the DFFE method in this case study was acceptable in 
terms of the statistics of the 367 predictions. The method did not seem to have any bias. 
The method, however, would not be appropriate to predict the extreme values. The 
method has the advantages of being fast  and does not even require solving simultaneous 
equations as in geostatistical kriging. It requires the specification of the functional 
parameters via cross-validation (e.g., by the use of genetic algorithms) or some a priori 
choice. It is suitable for studies involving multiple- inputs and multiple-outputs. The 
proposed method also incorporates the concept of flexible overlapping partition surfaces. 
This is particularly useful when it is desirable to incorporate interpretive knowledge 
based on a more complex understanding of the data. The use of an overlapping partition 
is important in cases where the intrusive contact of a boundary is not clear. In such a 
situation, it would be reasonable to incorporate fuzzy logic techniques for the surface to 
show limited continuity, rather than a sudden break across the boundary of the 
independent partition regions.  

 
Figure 7  The distribution of the rainfall estimates. The 10 largest and the 10 smallest values are shown by 

"squares" and "circles", respectively 
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Figure 8  The distribution of the rainfall estimation errors (estimates minus true values). 

Light color (<0), deep color (>0) 
   
5. Conclusions   
In this paper, we present the use of a dynamic fuzzy-reasoning-based estimator (DFFE) in 
predicting rainfall measurements in a case study in Switzerland. The functional 
parameters are optimised using genetic algorithms. The results of this study show that 
ODFFE is suitable for estimating the overall statistics of the predictions, but not the 
extreme values. The method, however, has many advantages. It is suitable for handling 
multi-dimensional inputs and outputs. The proposed method also incorporates the use of 
overlapping polygons, which is an effective way to incorporate expert judgment on 
neighbourhood searching.  
        Generally speaking, the ODFFE should be a flexible estimation technique especially 
when the number of additional variables increases in Equation (1), since it uses a 
multiple, adaptive dimensional fuzzy rule base inference method and fully incorporates 
spatial variability among data points. In addition, the ODFFE does not require a 
structured knowledge base; it has lots of freedom in choosing the fuzzy membership 
functions and the fitness function of genetic algorithms. These provide us with great 
flexibility to design systems for different applications according to different requirement 
without changing the dynamic knowledge base creator. Therefore, the ODFFE is more 
adaptive to long term management of the systems.  
        It is important to note that (a) partition of the whole region into overlapping sub -
regions (Figure 3) is based on the observed rainfall data or expert knowledge. A different 
partition of the region will obtain very different results. (b) Selection of membership 
functions (Equations 5 and 6) are totally subjective, but not sensitive to results when 
using GAs to optimise their parameters. (c) Selection of fitness functions (Equations 7 
and 8) is also subjective, but the final predicting results are not sensitive to the choice of 
fitness functions. (d) Selection of defuzzification scheme (Equation 9) is subjective, too, 
but is not sensitive to the final predicting results.  
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