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I

Foreword

In the event of an accidental release of a radioactive pollutant, it is essential to the decision
making process that maps describing the spatial distribution of the radioactive material are
provided at a very early stage. Contaminated territories can therefore be identified and delineated.
In this way appropriate countermeasures can be taken for the exposed population, as well as for the
long term restoration of contaminated terrains. Since radioactive releases are primarily measured
with existing monitoring networks, measurements are collected as geo-referenced values that are
further interpolated in order to generate a spatially continuous map of the pollutant. The estimation
of the contamination at unsampled locations, a procedure commonly known as spatial
interpolation, is estimated to be of key role importance during the early phase of environmental
emergencies when monitoring data are still scarce. Ideally, the methods should be able to identify
the locations where extreme values (very high or very low values) can be expected, and provide the
associated uncertainties of such predictions.

Under the auspices of the Radioactive Environmental Monitoring (REM) programme of
the Institute for Environment and Sustainability at the Joint Research Centre of the
European Commission in Ispra, Italy, a spatial interpolation exercise, called Spatial Interpolation
Comparison 97 (SIC97), was organised on the AI-GEOSTATS mailing list (www.ai-geostats.org)
in September 1997. Inspired by a publication of Evan J. Englund1 who compared the results of 12
scientists applying geostatistical methods to the same dataset, the participants of SIC97 were asked
to estimate daily rainfall values at 367 locations starting from 100 observed measurements. A
digital elevation model of the country was made available as well, since surface relief is usually an
important parameter in meteorological studies. The choice of the interpolation method was free and
once the estimations had been made, the 367 observed rainfall values were made available to the
participants in order for them to assess the accuracy of their approach.

The objectives of SIC97 were to give a more general overview of existing spatial interpolation
methods and to highlight the latest developments in spatial statistics. Although only daily rainfall
measurements have been distributed to the participants, a variable everyone is familiar with, the
outcomes of this exercise can be easily related to the problem of mapping radioactivity deposition.
Radioactivity deposited on the ground after an accidental release to the atmosphere and daily
rainfall do not only behave in a similar way, i.e. the variables present usually a global trend and
strong local fluctuations, but they are also intimately correlated since rainfall is the main factor
affecting the deposition of radioactivity released to the atmosphere. The participants were therefore
also invited to evaluate their methods for monitoring radioactivity in the environment, this in
routine or emergency situations. The performance of the methods used had to be discussed as well
in terms of computational time and ease of automatisation in view to assess their potential use in
the frame of an emergency-mapping system.

The aim of this publication however is not to provide “the best” interpolator, since no
generalisation can be made from one case study applied to a specific problem. In the 13
contributions to SIC97, which aim at solving a unique problem, some clear indications of the large
variety of interpolation functions spanning the gamut from ordinary kriging to radial basis function
networks, as well as their applications, can be retrieved. Some additional contributions to this book
attempt to develop specific problems in spatial statistics, others draw general lines of the potential
offered by these methods for the monitoring of radioactivity in the environment.

Grégoire Dubois
Marc De Cort

                                                            
1 ENGLUND, E. J. (1990). "A Variance of Geostatisticians" Mathematical Geology 22(4): 417-455.
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Radiological mapping: Chernobyl experiences in Austria and emergency 
response 

 
P. Bossew 

 
Institute of Physics and Biophysics 

University of Salzburg, Austria 
 

E-mail: p.bossew@magnet.at 
 

Abstract: The paper presents a historical review of radiometric mapping in Austria after the 
Chernobyl accident. In accident response measures, maps were only one source of information 
among others. Statistical considerations related to mapping were not made but would not have 
affected the decisions anyway. Lessons learned and current considerations and plans for 
emergency response are discussed, as well as the Austrian scheme of data acquisition and decision 
making, concentrating on aspects related to mapping and sampling as spatial problems are 
concerned, and uncertainty treatment.  
 
Keywords: Chernobyl, radiological mapping, emergency response, sampling.  
 

1. INTRODUCTION 
The Chernobyl accident on April 26, 1986 has led to a considerable radioactive 

contamination in parts of Europe. Like in all countries affected, also in Austria much work has 
been done, first to assess the situation, estimate and mitigate the possible damage, later to better 
understand the mechanisms of radioactive fallout and its distribution and cycling in the 
environment.  

This article is however not intended to present a complete and exhaustive overview over all 
aspects as suggested by its title. Instead, it reflects the author's experiences collected while 
participating in various contamination survey projects. Many of them were aimed at radio-
ecological investigations; contamination assessment and mapping as well as geostatistical 
considerations play a secondary, supporting role only in such projects. Therefore, there is an 
obvious bias for certain methods, which does not mean that they are seen to be the most important 
or even most appropriate ones. For example, airborne gamma spectrometry is rather mentioned 
than given the discussion it merits in view of its certainly increasing importance for radiological 
mapping in the future. 

The first part (section 2) represents a historical outline of measuring, decision making and 
contamination mapping in Austria following the Chernobyl accident. Subject of section 3 is 
emergency response, again concentrating on Austrian experiences and current considerations. The 
discussion emphasizes on aspects which refer to radiation mapping, be it in decision making or 
methodical problems. It will become clear, however, that the situation, in particular as quality 
assurance (QA) in mapping is concerned, is far from ideal; certain aspects (distribution of hot spots 
etc.) are not even sufficiently understood theoretically. The Chernobyl experience, sad as it is, has 
however provided an opportunity to study spatial phenomena of fallout distribution in more detail, 
as a large-scale experimental setup has been provided for free, if unwanted, so to say. 
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2. CHERNOBYL EXPERIENCES IN AUSTRIA 

2.1. Introduction 
Austria is among the countries which are most affected by the Chernobyl accident. The 

mean 137Cs inventory due to Chernobyl in soil is 18.7 kBq/m2 (ref. 1 May 1986; BOSSEW et al. 
1996) with maxima above 150 kBq/m2; in raw milk some 150 Bq/L of 137Cs can still be found at 
certain locations in the Alps 14 years after the accident. However, official Austria dealt relatively 
well with the accident in the first days. The reason may have been, among others, that virtually no 
economic interests of a nuclear industry were at stake in Austria which would interfere with the 
interest of authorities to protect the population. Therefore, relatively severe contamination limits 
for the use of foodstuff were introduced as compared to most other countries, and the information 
policy was quite transparent under the given conditions. 

2.2. Chronology and data bases of decision making 
A good overview of the radiological situation was available in real-time due to the 

"Austrian Radiation Early Warning System" (AREWS), a network of doserate meters distributed 
over the country (for details see sec. 3.3). The AREWS showed first elevated doserates on April 
29, 13:30. An equally important decision tool were data of air filters, which proved the 
predominant iodine contribution (first data April 29, 14:30) and milk contamination (first results 
May 1): the air filter analysis showed that no major Sr and Pu contaminations were present (ca. 
May 5).  

However, as it was clear quite soon (first emergency staff meeting, 30 April, morning) that 
doserates and air contamination would most likely not reach acutely dangerous levels (by 
assessment of meteorological trajectories and observation of the releases) which would require 
immediate action, the reaction time for taking decisions extended to some days, i. e. mainly to 
organize milk management and restriction of superficially contaminated field fruits. Since milk 
data were closely associated to geographical locations due to the centrally organized scheme of raw 
milk collection which existed in Austria at the time, measures of "milk management" could be 
taken quite efficiently from a logistic point of view. (Due to deregulation the situation has changed 
since then.) Per day ca. 800 milk samples from each of a total of 214 Austrian dairies were 
measured, delivered to the laboratories by army and police helicopters. In other words, sampling 
was not performed according to geographical criteria.  

The reaction time for caesium management was even longer. (However, the first warning 
against using of field fruits, pasture feeding of cows and letting children play outside was issued by 
the Ministry of Health and Environment on April 30, 17:00; the milk limit, 10 nCi 131I/L (370 
Bq/L), was enforced on May 2, later reduced to 5 nCi/L together with the introduction of a 5 nCi/L 
(185 Bq/L) 137Cs limit. For a detailed chronology see FEA 1986 and FCH 1988.) Milk and 
foodstuff contamination limits were established according to dose calculations but not responding 
to the actual data. 

2.3. History of radiation maps 
By archeological digging in the archives a history of maps could be established as follows:  

1986 

• First days of the accident: The first contamination map was produced on May 3 based on 
doserate and rainfall data and later (November 1986) published in FEA 1986 (Fig 1). 
Contamination zones were hand drawn as assessed from the raw data; the picture is 
approximately correct from today's state of knowledge; there are certain deviations on a 
regional scale, though. However, the contamination map was not a base for decisions which 
would have applied regionally, therefore the data and/or interpolation "errors" had no 
consequences. The first map which has been published (May 12), was based on doserate data 
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of May 4, Fig. 2 (GERGELY 1986). A series of maps showing the time dependence of the 
doserate distribution (FEA 1986, Fig. 17) was only produced in late summer 1986.  

• Mid May 1986: publication of a map mistakenly called "grass contamination map". It was in 
fact based on roughly estimated doserate and rainfall data (using conversion factors, Fig. 3). 
The map was hand drawn, isolines were defined according to the visual impression of the data 
distribution (Fig. 4; AIAE 1986a). The first (not published) version of this map (similar to Fig. 
3) is a big hand drawn poster with level symbols (no isolines) at the locations of the AREWS 
monitors. This still existing map, said to have been drawn in the first days of May, did in fact 
serve for internal decisions: (1) it was seen that no very severe action was required, like 
evacuations; (2) it was decided in which regions samples (like milk) had to be taken with 
priority, before being able to organize a country-wide sampling program. 

• Summer-Autumn 1986 

After the need for urgent accident response was over, subject of the activities was longer term 
“dose-saving” management. Maps served this purpose as well as information of the public. The 
first official Chernobyl report was issued in November (FEA 1986). 

• A real grass map (137Cs, nCi/kg) was issued end of July (reproduced in FEA 1986, Fig. 5) 
using, for the first time, calculated isolines with a linear level scale (6 levels, class width 10 
nCi/kg). As an overlay the land use (4 classes) is shown in the map. The interpolation method 
is unknown as well as if considerations about uncertainties were made. 

• Later in August 1986, A dose-rate map based on GM measurements (Fig. 6; AIAE 1986b; 
independent of the AREWS) was issued; also in this case, isolines were drawn by hand and 
again no attempt was made to discuss uncertainties, interpolation problems and the like. 

• First estimations of soil contaminations were made based on soil sample data (Bq/kg) 
converted to Bq/m2 with assumptions on soil densities in summer-autumn 1986; these results 
are not very reliable, though. Apparently no attempt was made to produce maps out of these 
data. However, already in late May several vertical soil profiles were measured (FEA 1986). In 
late autumn, a deposition map of Northern Austria was issued. Values were calculated from 
soil samples, the map is hand-drawn with level symbols only (FCH 1988, Fig. 7). Real 
deposition data out of rainfall samples were evaluated only later, apparently. A rough map (no 
interpolation) is published in FCH (1988) (Fig. 8). 

• In the province of Styria extensive sampling of hay of first and second harvest (ca. late May 
and August, respectively) resulted in "hay maps" were published in Nov. 1986 (FEA 1986, Fig. 
9). Mean values per "Gemeinde" (community, lowest administrative level) were displayed, i. e. 
no interpolation was performed. Another, Austrian-wide hay map (first harvest) has been 
produced by the Ministry of agriculture in later 1986, apparently. The hand drawn map shows 
district means (FCH 1988, Fig. 10). These maps were used as a decision base for a "hay 
management" in winter 1986/7, in order to mitigate the expected new increase of milk 
contamination due to feeding the cows with hey made out of superficially contaminated grass. 

• In July a "red current" map was produced (no isolines, just level symbols; Fig. 12; AIAE 
1986b). In Nov 1986 a "deer map" was published (FEA 1986, Fig. 11) based on roe deer meat 
data from May-July 1986. In this map, level symbols were used, no interpolation was 
attempted.  

From 1987 
As opposed to the maps produced in 1986, which were partly used for decisions, partly for 

information of the public, later on they mainly served more scientific purposes, like establishing 
contamination inventories and balances. 
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A series of milk contamination maps, showing district means (no interpolation) for each of 
the first 8 weeks after May 1, 1986, has been produced much later, apparently (shown in FCH 
1988, Fig. 13). 

Later, contamination maps were drawn as parts of regionally limited survey projects 
(AIAE 1987: Waldviertel region; BOSSEW et al., 1989: Hohe Tauern National Park, Fig. 14; 
BOSSEW 1991: Koralpe region).  

In 1990 the Austrian Geological Survey performed airborne 137Cs measurements in the 
Hausruck region. The data were mapped (mathematical interpolation) but apparently have not been 
published until recently (OBERLERCHER & MOTSCHKA, 2001; Fig. 15). A rough Austrian-wide 
deposition map was issued in 1989 (AIAE 1989, Fig. 16) 

In no case geostatistical considerations were made to our knowledge. On the other hand, it 
was known at an early stage that a high variability of the fallout inventory also on a small scale can 
occur, from which it follows that forecasting the inventory at a given point by interpolating data 
from adjacent points is not trivial; i. e. a need for more detailed statistical examination of spatial 
phenomena emerged. The picture was this: by careful sampling, the mean contamination of a field 
can be determined quite accurately (the typical uncertainty over 1 ha, obtained with quasi-point 
sampling (soil cores) is around 20%). At the same time, at any spatial scale a patchy contamination 
pattern with sometimes extreme high values appears.  

However, among radio-ecologists (who were in charge with these studies, including the 
author) no geostatistical skill was available until the mid 1990s. Only around 1993 a project started 
which focused on the investigation of spatial variability of the 137Cs inventory (LETTNER et al., 
1994; LETTNER et al., 2000) At this stage only classical methods like ANOVA were used. 
However, the statistical findings of this project formed an input to the "Austrian Caesium Map" 
project (BOSSEW et al., 1996; BOSSEW et al., 2001; Fig. 18), where for the first time in Austria a 
radiological map was produced on a somewhat sounder statistical level (the data were also used for 
the European Chernobyl Atlas, DE CORT et al., 1998).  

But even then no major thoughts were given to interpolation models (linear interpolation 
and smoothing by moving averaging was chosen). First attempts of "real" geostatistics, like 
semivariograms and fractal analysis started with a regional survey project in 1997 (FEA 1998; see 
also DUBOIS & BOSSEW, 2001); a study about multi-fractal analysis of 137Cs inventory distribution 
in Austria was published in 1998 (PAUSCH et al., 1998). 

The current state of wisdom on spatial dependence can be summarized as follows (for 
more technical details see DUBOIS & BOSSEW, 2001):  
 

(a) It is obvious that there exist regional trends, i. e. distinguishable contamination zones. 
The spatial scale from which a trend is detectable, seems to start from a few km. The structure of 
the trend has not been investigated quantitatively in detail yet, though.  

(b) As can be seen from semivariograms there is a spatial correlation of contamination up 
to around 100 km. On the other hand a high nugget effect can be observed, which is probably not 
only attributable to process related uncertainties, but also to strong local fluctuations.  

(c) The contamination pattern appears to have a fractal structure, i. e. the pattern is 
basically the same at any scale ("self-similar"). The frequency distribution of contamination values 
indicates that the frequency of hot spots is higher than would be expected from normal or log-
normal distributions.  

 
As a summary, radiation maps were only one of several informations which affected 

decisions on "dose saving" management. QA aspects of drawing maps were not considered, but 
they would not have had any impact on decisions at any stage. Many maps served for information 
of the public; however, rough maps based on doserate and rainfall data were used for political 



 7

decisions within the first days after the accident. Hay maps produced a few months later served for 
regulating winter feeding of cows. Only later in scientific projects, QA aspects of contamination 
mapping were discussed. 

3. EMERGENCY MANAGEMENT AND RESPONSE 

3.1. IAEA Generic procedures 

The IAEA has issued a series of documents dealing with emergency response in cases of 
nuclear accidents. Some contain recommendations about sampling procedures related to statistical 
considerations, which are of some interest in this context. 

In its technical document 1092 (IAEA 1999) the IAEA aimed to provide guidance for 
emergency sampling procedures. As objectives of emergency monitoring were identified: 

• provide information for accident classification; 

• assist decision makers on the need to take protective actions and interventions on the basis of 
operational intervention levels; 

• assist in preventing the spread of contamination; 

• provide information for protection of emergency workers; 

• provide accurate and timely data on the level and degree of hazards resulting from a 
radiological emergency; 

• determine the extent and the duration of the hazard; 

• provide detail of the physical and chemical characterization of the hazard; 

• confirm the efficiency of remedial measures such as decontamination procedures. 

A decision tree is given (p. 15) in order to find out what samples are actually to be taken; 
soil sampling is required for fallout situations. 

The document includes only very rough data evaluation (i.e. basic statistics) and no 
mapping procedures. However, as spatial problems are concerned, some thoughts are given to the 
matter in the soil sampling paragraph. Soil sample designs are described in detail (p. 275). The 
major concern is (a) how to find representative sampling location and (b) how to produce 
representative samples out of these areas. These subjects are also addressed in Tec. Rep. 295 
(IAEA 1989; for soil: Sec. 5.2.3): 

"For deposition studies, samples should be collected in undisturbed areas to a depth of 25-
50 cm with a coring tool. (...) The collection area should be flat, open terrain preferably covered 
with grass but without sheltering vegetation or structures. (...) There should be little or no runoff 
during heavy rains or overwash. (...) In general about 10 cores (or a total surface area of at least 
200 cm2) are taken and composed to make a single sample."  

The document discusses analytical QA and uncertainties but not the ones of the sampling 
procedure. - I want to add a few remarks on representativity.  

(a) sampling locations: 
At first sight, representativity depends on what kind of area is assumed typical for the 

region. However, one may decide for "ideal" rather than typical locations, in order to be able to 
compare locations of different regions. For example, while forested areas are typical for much of 
Austria, for the caesium map we decided to choose open grassland locations for sampling. Also in 
Austria, especially in the mountains, bumpy slopes are rather the rule than the exception; we still 
decided for plane and horizontal sampling locations as representative ones. In case of forests, the 
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reason is that the amount of fallout which is stored in the trees is not easily assessed; for slopes, 
run-off and concentration effects are hardly quantifiable, which can certainly produce a significant 
difference between deposition (fallout) and inventory. After all, the aim of the map was to estimate 
the deposition (out of measuring the inventory at locations where it can be assumed that there is 
not much difference). 

However, if the aim of the survey is to assess the inventory rather than estimating the 
deposition, the locations to choose would be the regionally typical ones. In any case, under most 
realistic conditions, the actual inventory (decay corrected) is not identical with the deposition (or 
fallout), since ecological and human induced processes can provide considerable spatial 
redistributions. Among natural mechanisms are surface run-off, erosion, leaking to ground water, 
biomass uptake; the latter include agricultural activities like harvesting, or all kind of landscaping 
and construction works. 

(b) sampling pattern 
The objective is to get an unbiased estimation of the mean contamination of the selected 

location. IAEA (1999) discusses 4 designs:  

Judgement sampling: based upon previous experience or supposition. This method is 
obviously prone to bias due the samplers judgement, as the name says. 

Random sampling: the site of each sample is chosen randomly distributed over the location 
to be surveyed. A drawback is the possibility of clustering the samples (a statistical effect). 

Systematic sampling: sampling according to grid laid out over the location. A possible 
drawback is, that if the contamination shows a pattern, the grid may systematically miss an effect. 

Stratified sampling: a two-stage method, which requires a preliminary survey (however 
done), upon which the location is divided in sub-areas of roughly similar contamination levels 
which are then sampled separately (at random or systematically). In general this method is more 
time consuming and expensive than the others but more accurate. 

For the Austrian caesium map, the soil samplers were advised to choose large (ideally 1 
ha) open grassland sites, which have apparently been left undisturbed since Chernobyl (easy to find 
in the mountains, but often difficult in regions with intensive agriculture); and select 10 points well 
distributed over the field, but at random locations, but at the same time to avoid hills and sinks or 
ditches etc.; this strategy could be called a mixture of the systematic, random and judgement 
approaches. On their protocols the samplers had to indicate the approximate distance of the most 
distant sampling points, in order to give information on the size of the "support" area of the actual 
sample. This distance was later used to estimate the contribution of the support size to the total 
uncertainty (expressed as confidence interval) attached to the result, which was defined as the 
estimated mean inventory density (Bq/m2) over 1 ha. Taking the samples on a smaller support, as it 
happened in many cases for various reasons, increases the uncertainty of the estimation of the ideal 
1 ha-mean, which effect has to be accounted for (LETTNER et al., 1994, 2000; BOSSEW et al., 
1996). 

The formula used for the confidence limit CL (in %; p=0.05) has been deduced from 
experimental values by regression (BOSSEW et al., 1996): 

CL [%] = 36.4 - 0.074 * d [m]   (0 < d < 150 m), 

d = distance of the most distant sampling points. For a 1 ha support area (d = 141 m) we get the 
standard CL = 26 %.  

For a discussion of sampling designs, see also WEBSTER & OLIVER (1990) and Internet 
(1999). 
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For in situ gamma spectrometry, the IAEA procedures (p. 128) suggest to choose an "open, 
smooth, plane area, distant from disturbing objects, where no agricultural or other activity 
destroying the vertical concentration profile was done since the radionuclide deposition." For the 
Austrian caesium map, when the in situ technique was applied, we chose large (ideally 1 ha; not 
easy to find in the mountains) horizontal pastures or cultivated fields; in both cases soil profiles 
were taken in order to appropriately correct the results.  

3.2. The situation in Austria 
In Austria, the logic of response to radiological emergencies is based on fast acquisition of 

radiation data and models which allow to predict expected doses. The data sources for real-time 
assessment of the radiological situation are the networks of dose rate monitors, of air monitors and 
of precipitation gauges (par. 3.2.1.). The data form the first input to the prognosis model (par. 
3.2.2.). Further data are being acquired in order to gradually improve the prognoses, in particular 
by surface contamination data (par. 3.2.4., 3.2.5.).  

3.2.1. Real-time data sources 

The basis for a fast assessment of the radiological situation is the continuously working 
"Austrian Radiation Early Warning System" (AREWS) consisting of 336 gamma doserate 
detectors which are permanently connected to the responsible (federal and provincial) authorities. 
These monitors are more or less evenly distributed over the country (Fig. 19) and, as the Chernobyl 
experience has shown (section 2), allow for a very efficient online and real-time assessment of the 
radiological situation. However, the local doserate is affected not only by artificial gamma emitters 
in the air or deposited on the ground, but also by natural processes: precipitation leads to a wash-
out of radon progenies to the ground and hence to an increase of the doserate, which can be 
considerable: a 50% increase within an hour is possible (RAMOS, 1998). Therefore, the 
interpretation of doserate data affords certain experience and phenomena like the Rn washout must 
be considered if an increase of the doserate at one or more monitors is encountered. 

Additionally there is a network of 8 continuously operating air monitors (gamma: HPGe, 
NaI: spectrum accumulation 1 day, evaluation every half hour; beta + alpha: PIPS detectors: 5 min) 
and aerosol and iodine samplers (NaI; sampling interval 1 day in normal and 1 hour in alert mode). 
As of spring 2001, three air monitors are equipped with HPGe detectors (with Peltier cooling, i. e. 
no liquid nitrogen supply required), the others with NaI crystals. The spectra can be inspected 
remotely and online. At these stations air temperature, precipitation, wind direction and doserate 
are being monitored simultaneously as well. 

More data on rainfall are quickly available in Austria by the TAWES network of automatic 
meteorological monitoring stations including rain gauges (118 stations; part of the international 
SYNOP network, PECHINGER et al., 1996; Fig. 20). The data form an input to the TAMOS system 
which calculates trajectories and deposition patterns (ibd.). The trajectories can also be calculated 
directly by the Federal Radioprotection Authority which coordinates all monitoring and sampling 
activities. 
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Figure 19: AREWS network    Figure 20: TAWES network 
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3.2.2. Radiological prognoses 

By means of radio-ecological models (in Austria: OEKOSYS, described in BGSK 1991a) 
incoming data can be evaluated relatively quickly (theoretically hours) in view of doses to be 
expected and the early initiation of additional action like food restrictions. OEKOSYS requires the 
input of the following parameters (MÜCK, 1997): 

 
(1) activity concentration integral (Bq/m3h), or alternatively, dose rate and nuclide vector; 

(2) precipitation (mm); 

(3) deposition (Bq/m2), if not estimated by (1) and (2); 

(4) time in the year of the contamination event. 

The concentration integral (1) is calculated from air monitor or filter results. With 8 monitoring 
stations only, some uncertainty about spatial homogeneity of the nuclide vector relevant for the 
deposit, which is possible with certain release scenarios and meteorological conditions, must be 
taken into account. (4) is important in view of its ecological significance for agriculture: the impact 
of fallout in winter is clearly different from near the beginning of the vegetation period (like 
Chernobyl) or one later in summer. For the deposition (3) no results will be available quickly, i. e. 
within less than a few weeks. Therefore estimations from doserate data seem indispensable. If the 
data are available, however, they will be used in order to improve the results. 

In MÜCK (1997) four prognostic phases are identified. The first phase, 2-4 days 
(depending of course on the scenario, here given for one similar to Chernobyl) after the start of the 
event (t0) and before the end of fallout, serves for a preliminary overview only. It is mainly based 
on on-line data systems and possibly first gamma-spectrometrical results. For the second phase the 
deposition should be essentially finished (possibly 4-6 days after t0); it includes more laboratory 
sample results and should provide a first estimation of expected first-year doses in order to initiate 
food regulations, agricultural restrictions and the like. The third phase (~ 6-12 days after t0), 
including first grass and soil results, should provide regional prognoses. Phase four, after the 
complete end of deposition, includes results of foodstuff and should provide a relatively reliable 
prognosis. 

For deposition data, 90 gamma-spectrometrical measurements of rainwater (if available) 
are suggested for each of the phases 2 and 3, and 118 soil samples for each of phases 3 and 4. 
Additionally in situ gamma spectrometry is suggested to be performed from phase 1. 

3.2.3. Sampling strategies 

Although it has been handled relatively efficiently in Austria, the Chernobyl experience 
has lead to an evaluation of shortcomings and proposals for improvements. A "Working Group 
Samples" has been established which discusses sampling schemes and methods for eventual future 
contamination cases and meetings have been held about the subject (the procedures are still in 
discussion and are not published yet; WGS). As general purposes of sampling the WGS identified: 

• fast assessment of the situation (contamination level and geographical extent and variability); 

• fast prognosis of radiation doses (input parameters for OECOSYS); 

• support for measures taken by the authorities; 

• assessment of the efficiency of the measures, enforcement of limits and restrictions: 

• validation of prognoses. 
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In any case the media to be sampled and the number of samples which are required for a 
prognosis depend on the circumstances of the contamination event, such as its geographical 
extension and, most important, the time of the year: for example, for a NPP accident occurring in 
winter, soil radiation and ingestion contribute ca. 82 and ca. 3 % to the first year dose, respectively, 
whereas if it happens in summer, the respective contributions are ca. 5 % and 94 % (MÜCK 1997). 
The significance of flexibility in sampling strategies is obvious from these figures. 

3.2.4. Surface contamination 

Post festum Chernobylis, it has been shown (GERZABEK et al., 1991) that there is a very 
good correlation between the AREWS data and 137Cs soil inventory, r=0.77, p<1e-4. Major 
deviations are observed in the mountains where the AREWS monitors are not located such as to be 
representative for sites which are considered important for the estimation of the radiation situation. 
However, a reconstruction program is currently underway which along with hardware and software 
refurbishing, includes relocation of some monitors to more representative points. 

It must still be anticipated that even after deposition has taken place (i. e. after virtually 
complete fallout or washout, so that air contamination does not contribute to the doserate) the 
AREWS does not a priori produce an accurate picture of the deposition density distribution due to 
several reasons:  
• the doserate above ground clearly depends on the nuclide composition of the fallout, which 

may be variable regionally;  

• the monitors may not produce representative values in certain cases, e. g. in situation of 
enhanced surface runoff which would sweep away the fallout around the monitor, snow cover 
or the like; 

• some monitors may still not be located representatively. 

However, surface contamination is not considered a primary information for emergency 
management response (i. e. information which has to be available within hours). The current 
emergency plan still includes that a surface soil sampling program starts immediately after 
deposition has essentially ended. For longer term agricultural management information on soil 
contamination is essential in order to estimate the contribution to doses which arise from the 
uptake of radionuclides by plants. However, this allows for a longer reaction time and appropriate 
planning. Anyhow, one lesson from the Chernobyl experience was that, while most essential data 
were at hand readily, it took an undue long time, compared to other countries, in fact 10 years, until 
a country-wide contamination map was available in Austria, which was based on statistically 
sounder principles, like a homogenized data set and considerations on uncertainties. In particular 
the lack of homogeneity of the original data proved delicate, as existing data had to be used, since 
it was not found reasonable (nor economically justifiable) to produce an entirely new dataset for 
this purpose. As a matter of facts, nearly all projects in course of which deposition / inventory data 
were acquired, had used different methods.  

One aspect shall also be mentioned. In case of severe contamination (e. g. ~ 10 MBq/m2 
137Cs; for discussion of "severe" see below) the people who perform sampling have to protect 
themselves. As the author could experience in sampling exercises in the Chernobyl zone, work is 
quite unpleasant under such conditions; it can be expected that quantity and quality of samples 
would suffer in this case. 

3.2.5. Number of samples 

Basically the number of samples must be a compromise between the quality of the result 
(minimization of uncertainties) and on the other hand, wasting of time and money and blocking 
resources which could be used more efficiently (in the sense of radioprotection and dose reduction) 
for other purposes (TSCHURLOVITS, 1997). 
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As soil sampling is concerned, the subject has been discussed in literature. Assuming a 
normal distribution of statistically independent (!) samples, the classical answer is 

n = (xp CV / u)2, 

where xp = Gauss value for significance p (xp =1.95 for p=0.05, e. g.), CV = coefficient of variation 
of the sample, u = maximal relative uncertainty allowed. There are various references for the CV, 
see e. g. LETTNER et al. (2000). For Chernobyl fallout a typical CV is 20% over a 1 ha flat area. 
Thus, 15 soil samples distributed over 1 ha are required in order to estimate the mean 
contamination of this area with an uncertainty of 10 %. 

However, adjacent deposition values are not statistically independent events in general, as 
can be shown by the semivariogram technique. According to the degree of spatial correlation the 
number of samples required is smaller than the classically determined one. Sampling strategies 
based on geostatistics are discussed in e. g., MCBRATNEY & WEBSTER (1983) and WANG & QI 
(1998). 

In the case of new fallout neither CVs nor semivariograms of the deposition are known. 
Default values from the Chernobyl fallout may serve as preliminary input for sampling strategies. 
Establishing a reference database would be wishful. 

3.2.6. Severe accidents 

In case of severe contaminations strict measures may have to be taken by the authorities, 
like telling people to stay inside and insulate doors and windows, take iodine tablets in order to 
prevent radioiodine uptake by inhalation, or even evacuations. The question if certain measures, 
like evacuations of cities are feasible shall not be discussed here (I doubt it); emergency plans do 
exist and from time to time brochures with information on how to behave in such situations are 
distributed by the authorities (BGSK 1991b, e. g.) and other institutions (MRAZ et al. 1991). 

A severe contamination I would call one which corresponds to "risk level 3" as defined by 
the Austrian emergency plan (BGSK 1992) (The risk levels are defined by the expected first year 
expectation dose through all important pathways; level 3: 25-250 mSv, level 4: >250 mSv). Level 
3 includes a ban for the general public to stay outside and emergency food and water supply by 
specially equipped staff, intake of iodine tablets also by adults etc.; level 4 would include 
evacuations. Supposing an initial radionuclide mix similar to the Chernobyl fallout: 137Cs : 134Cs : 
131I : 103Ru = 1 : 0.5 : 10 : 3 in terms of deposition density (i. e. not considering short lived nuclides 
which can contribute significantly), level 3 would be reached with an approximate deposition of ~ 
0.5 MBq/m2 137Cs (corresponding an external doserate of ~ 10 µSv/h). 10 MBq/m2 137Cs (~ 0.2 
mSv/h) would mean risk level 3-4. 

In any case, model calculations show that severe contaminations by nuclear accidents are 
confined to relatively small regions. For example, a model calculation for a possible (though 
unlikely) accident of the Czech NPP Temelín (ca. 50 km from the Austrian border), also 
considering a historical meteorological situation (trajectories, rainfall), resulted in a maximal 137Cs 
deposition of 12 MBq/m2 (FEA 2000); the area where strict measures would have to be taken 
amounts to some 4-5000 km2.  

In such case there is a definite need for fast and accurate information about the 
geographical distribution of the contamination in order to allow for the authorities to take 
appropriate measures. An area of 4000 km2 is covered by ca. 16 AREWS stations, which may not 
be enough for sufficiently accurate mapping. 

However, for emergency situations discussions of geostatistical details like interpolation 
models are currently not considered important, even though there is an awareness of the problem 
of, e. g., the dependence of the location of isolines and identification of hot spots of interpolation 
methods.  
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3.2.7. Dealing with uncertainties 

There is, of course, awareness of the statistical aspects of any measuring, evaluation, 
modelling and mapping. Historically, the discussions focussed on the interpretation of limits and 
its economic and legal consequences: is a milk sample with a measured 137Cs concentration of 4.9 
± 0.5 nCi/L really below the limit, since with an easily calculable probability (42 % in this case) it 
may be > 5 ? In view of the large amount of samples which had to be processed the pragmatic 
decision was, that the measured value is the right one in a legal sense, but that its statistical 
uncertainty has to be communicated. This decision will also apply in future cases. (Another view 
was that a value must be below the limit minus 2 sigma, e. g., in order to be below the limit 
reliably; also the opposite view exists, i. e. that a sample must be below the limit plus 2 sigma in 
order not be discarded without necessity.) 

Extreme values will not be dealt with as outliers but replicate measurements will be 
performed (not only out of radioprotection reasons but also in order to avoid public concern). 

Generally it cannot be denied that QA may be a problem in emergency situations: 
Laboratories may not have detector calibrations appropriate for the kind of samples they get, 
automatic monitors may malfunction, interpolation procedures may yield results which appear 
more accurate than they can be under the circumstances, etc. etc. etc. 

3.2.8. Grid distance and hot spots 

The monitoring grid of the AREWS is rather coarse in view of the anticipated existence of 
high local variability and hot spots. A refining of the grid is not seen as an immediate necessity in 
general, in view of the resulting quadratic increase of sampling points and the related logistic and 
economic expense. As the aim of monitoring is seen in getting a "representative" picture of the 
contamination situation, i. e. a picture which allows for assessing and predicting mean radiation 
doses, the determination of small scale phenomena is not believed to be relevant for this purpose 
(WGS). However, certain contamination situations, such as regionally confined high 
contaminations may require this action. Furthermore, in such cases airborne mapping is foreseen. 
The technical facilities are being developed and tested since the late 1980s (see section (i) below). 

It can be taken for granted that public pressure (resulting in political pressure) will lead to 
additional monitoring in certain regions, like areas with high fallout levels or where hot spots have 
been identified, or which are considered as important for tourism, e. g., the Alps. While this may 
not be necessary for radioprotection reasons, further scientific evaluation and fine mapping may 
certainly take advantage from the resulting quantitative increase of data. 

Apart from this, it is anticipated that also economic pressure on agricultural producers by 
the market will automatically result in additional measurements being performed on a regional 
basis in sensitive areas, and thus again refining of the data grid. However, QA may be a delicate 
point in such circumstances. 

The spatial distribution of the AREWS (Fig. 19) and TAWES monitors (Fig. 20) shall be 
discussed briefly. A fractal analysis (DUBOIS & BOSSEW, this volume) yields a correlation 
dimension D = 1.99 ± 0.08 for the AREWS network, which is practically ideal (D = 2). Therefore 
the "dimensional resolution" problem should be no problem, whereas the mean distance of the 
monitors of ca. 15 km may let hot spots go undetected. This has in fact happened, as the 3 "hot 
zones" of Austria with a 137Cs deposition > 150 kBq/m2 (as found so far) have not been identified 
by the AREWS. Also for the TAWES, the correlation fractal dimension is almost 2, in other words 
also this network covers the country very well. The mean distance is around 25 km in this case.  

3.2.9. Current improvements and trends 

The current upgrading of the AREWS has already been mentioned above. There is a 
definite tendency to integrate on-line mapping in monitoring systems; this option is available with 
the AREWS but an upgrading is planned which should make it more workable. However, there are 
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no plans to implement sophisticated geostatistical models: for fast and easy use in stress situations 
the mapping procedure must be fast, stable, robust and reproducible without long considerations of 
possible fine-tuning of parameters. However, no information was available on what this means in 
more detail. 

A further trend is to perform on-line improvements of radiological forecasts according to 
incoming data. One system which is currently being considered is the European Real-time Online 
Decision Support system, RODOS, which would allow for radiological prognosis, display of 
geographical distributions and uncertainty estimations. Information about the system can be found 
on the RODOS web page (www.rodos-fzk.de). 

As mentioned above, airborne measuring will play an increasing role in the future. In 
Austria a helicopter based system run by the Federal Geological Authority is currently in use for 
radiometric mapping (OBERLERCHER & MOTSCHKA, 2001). The technique is being used for 
geological exploration since the early 1980s. It is currently based on NaI detectors, positioning is 
done with GPS and GLONASS (the Russian equivalent to GPS), differential GPS is possible; for 
altitude determination a laser system, radar and barometric methods are being used simultaneously. 
Incoming data are stored by a computer. For data processing usual corrections are performed (data 
filtering, background, radon, cosmic rays) as well as a topographical correction which accounts for 
the distortion of the ideal (as referring to a plane source) gamma flux by the orography of the 
terrain. In 1990 a regional 137Cs map has been produced this way (see above 2.3; Fig. 19).  

Real time data processing and display is planned as well as the use of HPGe detectors. 

3.2.10. The role of the public 

The Chernobyl experience has shown the importance of graphical representations of data. 
It can be anticipated that this is only to become ever more important given the increasing visual 
orientation of Western culture. From today's point of view of technology post-Chernobyl data 
displays and hand drawn maps appear rather prehistoric. It may seem irrational but the credibility 
of authorities also depends on the visual quality of its publications.(I want to stress, however, that 
taking right decisions is certainly not a matter of technology in the first place.) 

A notoriously difficult matter is how to communicate statistical uncertainties to the public. 
Experience has shown that journalists generally do not understand this point (many politicians 
don't either). Unfortunately this appears a hopeless case and no solution is in sight, as opposed to 
most technical problems. 

A problem may be politically initiated sampling or measuring programs (in order to calm 
economically strong or p. r.-potent interests). This cannot be avoided but may result in blocking 
capacities which could otherwise be used more efficiently. On the other hand, in a democracy 
public interference with the authorities' decisions is not only legitimate but in fact necessary for 
political QA, so to say. 

Furthermore, the public perception of risk related to radioactive contamination is not 
necessarily the same as the one by, say, radioprotection officers or insurance companies; in fact 
experience has shown that it can be very divergent. This is also legitimate since there is no 
objective and universal definition of risk, and scientists as well as the administration must be 
strongly warned against the temptation of imposing measures of risk which are seen as 
authoritative, because they are based on quantitative considerations, and carried through as such. 
Therefore emergency response, including sampling programs, are necessarily and legitimately 
subject to democratic reasoning. 

 

 



 15

4. SUMMARY 
Discussing the history of contamination mapping after Chernobyl in Austria, it has been 

shown with a number of examples that, while graphical display of data has been considered 
important from an early phase after Chernobyl, QA of mapping has not been thought as relevant at 
this stage; furthermore, technical standards were not very high in most cases, not so much because 
they had not been available, but because the matter was not given much attention. Only later, in 
course of a more scientific occupation with the subject, rather than for radioprotection reasons as 
part of emergency response, QA aspects, like process uncertainties and the spatial variability of the 
fallout were studies more extensively.  

Later after Chernobyl, considerable work has been invested in Austria in improving the 
preparedness for possible future contamination cases. Not only the technical means were upgraded, 
but also aspects relating to spatial problems, like sample representativity, regional resolution of 
data acquisition and prognostic models, and real-time modelling (including mapping) became 
subject of discussions and were partly implemented in the procedures.  

However, there are aspects of the spatial behaviour of radioactive fallout, like hot spot 
frequency and distribution, for which the empirical database is still not sufficient, which are not 
enough understood theoretically, and which therefore are not yet accounted for in sampling and 
mapping procedures. 
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Fig. 1: contamination zones, ca. May 3, 1986 Fig. 2: published data, May 12 1986 

 

 
 

 
 

Fig. 3: contamination, first days of May 1986 Fig. 4: „pseudo-grass“ map, summer 1986 

 

 
 

 

 
 
 

 
Fig. 5: grass, May-July 1986 Fig. 6: dose rate, summer 1986 
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Fig. 7: soil, N Austria, autumn 1986 Fig. 8: deposition with rain, May 1986 

 
 

      
Fig. 9: grass, Styria, summer 1986 Fig. 10: hay, summer 1986 

 
 
 
 
 

  
Fig. 11: deer map, May-July 1986 Fig. 12: red current, summer 1986 
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Fig. 13: Raw milk, first week of May 1986 Fig. 14: Hohe Tauern region, 1988 

 
 
 

  
Fig. 15: Hausruck region, 1990 Fig. 16: Cs-137 deposition, 1989 

 

  

Fig. 17: dose rate, April 30, 1986 Fig. 18: Austrian Cs map, 1996 
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Spatial analysis of 137Cs in the environment: an overview on the current 
experience. 

 
G. Dubois 1 and P. Bossew 2 

 
1 Dept. of Mineralogy and Petrography, 

University of Lausanne, Switzerland. 

E-mail: gregoire.dubois@usa.net 

2 Institute of Physics and Biophysics, 
University of Salzburg, Austria. 

E-mail: p.bossew@magnet.at 
 

Abstract: This paper aims to provide the reader with an overview on the current knowledge in the 
methods used to analyse 137Cs deposition in Europe after the Chernobyl nuclear power plant 
accident from a spatial point of view. A survey of the literature has shown that the researchers who 
are making the measurements are frequently not aware of the existing methods that have been 
developed to draw a deposition map. On the other hand, the researchers who are aware of these 
methods are applying these without much concern for the information that is provided. The paper 
therefore aims to bridge the gap between radioecologists and the geostatisticians by highlighting 
the specificity of radioactive measurements and the consequences that derive from it on the 
methods used to make a spatial analysis of the variable under study.  

 
Keywords: radioactive measurements, mapping techniques, geostatistics, 137Cs. 
 

1. INTRODUCTION 
In the night of the 26th of April 1986, what was supposed to be a safety experiment of the 

reactor IV of the Chernobyl nuclear power plant became the worst civil nuclear accident ever 
registered. The explosion of the reactor followed by its combustion released radionuclides into the 
atmosphere during 10 days which contaminated the whole Northern hemisphere. The radionuclides 
were released mainly in gaseous form (between others, noble gases 133Xe, 85Kr, iodine isotopes 
131,132I, Ru isotopes 103,106Ru) and as aerosols (part of iodine, caesium isotopes 134,136,137Cs, …). 
Some radionuclides with long half-life can still today be observed in the environment (134,137Cs, 
125Sb, 90Sr, 238,239,240Pu, etc.).  

The authorities and researchers immediately made attempts to predict the deposition of the 
radionuclides with the help of maps in order to assess the levels of the deposition and identify the 
regions where counter-measures had to be taken. The first description of the deposition of 137Cs in 
the whole of Europe was published only in the European Atlas of radiocaesium deposition after the 
Chernobyl accident (DE CORT et al., 1998) and showed clearly a large variety in the sampling 
strategies as well as in the measurement methods in the European countries (Figure 1). As a matter 
of fact, researchers of every country have shown very different approaches to analyse and describe 
the deposition patterns. A similar observation can be made about the mapping methods used.  

Going through the journals publishing papers on radioactivity in the environment will 
show that the researchers, mainly radioecologists, are often not familiar with the mapping 
techniques which have been used to produce the maps published after the Chernobyl accident. In 
many cases, the methods and the objectives of the mapping step are not even described even if 
these can strongly affect the results. On the other hand, papers on spatial statistics with cases 
studies involving radioactive measurements are lacking the basic information on the data used 
which is also essential to select an adequate mapping function. By discussing both the 
measurement and the mapping methods in respectively a spatial and a radioecological context, this 
paper aims to bridge an important gap between statisticians and radioecologists.  
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Figure 1. Sampling strategies of 137Cs in the European countries after the Chernobyl Nuclear 
power plant.  
 

2. FACTORS AFFECTING THE SPATIAL DISTRIBUTION OF 
RADIOACTIVITY IN THE ENVIRONMENT 

Radionuclides emitted in the atmosphere following an accidental release will be deposited 
on the ground either by dry deposition or by wet deposition. The first process results from a direct 
contact between the contaminated surface and the radionuclides. It is a continuous process, as long 
as radioactivity is in the air, based on sedimentation, adsorption or impacting. Dry deposition is 
important for gases but less for aerosols for which the wet deposition seems to be the main factor 
which will affect their spatial distribution (CLARK & SMITH, 1988). Wet deposition comes from the 
interaction between rainfall fields and the radioactive clouds. The process, noted W (Bq/m²), is 
considered to be proportional to the product of rain (R, in meters) and the mean concentration C (in 
Bq/m3) of radioactivity in air. Thus,  

W = wrCR 

where wr is a dimensionless washout factor defined as the ratio of the concentration in surface-level 
precipitation to the concentration in surface-level air. This factor is of the order of 6×105. As a 
result, wet deposited radionuclides present highly variable concentrations on the ground over short 
distances, rainfall fields being sometimes not larger than a few hundred of squared meters 
(APSIMON & SIMMS, 1986; APSIMON et al., 1988). 
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3. MEASURING THE RADIOACTIVITY IN THE ENVIRONMENT 

Among methods to measure radioactive deposit on the ground the most common are:  

3.1. Soil samples 
Soil samples are taken and activity concentrations are determined in the laboratory. For 

radionuclides which do not emit gamma radiation, like 90Sr (β only) and 239,240Pu (α;  γ too weak 
for most purposes), laboratory based soil (or rainwater) sampling is the only method available. 
Because of the attenuation properties of α and β particles (resulting in short ranges) remote sensing 
is impossible. 

In order to include the total inventory, the depth of sampling has to be carefully defined on 
the basis of the vertical migration properties of the analysed radionuclide and on the time having 
followed the phenomenon that has deposited the radionuclides on the ground. The migration 
properties depend mainly on the physico-chemical properties of the soil and the radionuclide. In 
general, the vertical migration of 137Cs is slow in most soils and soil samples with a depth of 5 cm 
taken up to three years after the deposition will therefore store almost all the radioactivity 
(CREMERS et al., 1988). In any case, the method provides an information for a surface of a few cm2 
only that might not be representative of the radioactivity observed on larger surfaces.  

The actual soil sampling procedure is less trivial than it may appear. Producing soil cores 
is virtual impossible in dry and sandy soils; cross contamination is a problem if soil profiles are 
taken. For a review of sampling techniques see also IAEA, 1989 and IAEA, 1999 (p. 275 ff.). 
LETTNER et al. (1994) have made an attempt to quantify the different sources of process-related 
uncertainties. The main stochastic contributions to the PCV (process coefficient of variation) were 
the determination of the core cross-section, the internal inhomogeneity of the sample and 
aliquotation errors. The predominant systematic error seems to be due to profile cut-off in most 
cases. The stochastic uncertainty (PCV) can hardly be reduced below 5 % for soil samples. The 
cut-off error should be taken seriously. In some cases, a depth distribution model based on local 
soil data may help to quantify the fraction of the inventory below the sampling horizon and thus 
accounting for this error. Unfortunately the shape of the depth distribution can be as well quite 
variable in space.  

Many factors affect the distribution of the radionuclides in soils (soil type, pH, agricultural 
practices, impact of fauna and flora, hydrology, …) and render so the measurements made at 
different time difficult to compare unless one has an extensive knowledge of the analysed soil. 
While the low detection limit (a few Bq) renders the method very attractive, the time of work and 
the limitation of the information provided in a spatial point of view are the main parameters that 
limit the approach for mapping purposes in emergency situations.  

3.2. In situ gamma spectrometry  
Put at around 1 m above the ground, the spectrometer can measure (Bq/m2) in a short time, 

typically 15 to 30 min for a deposition of 10 kBq/m2 of 137Cs, the mean areal activity concentration 
as well as the dose rate with a detection limit lower than 100 Bq/m2. This method provides the 
researcher with an information that is representative of the mean deposited activity on a surface of 
almost 1 ha (ICRU, 1994), with fluctuations of around ± 10% around the mean value. The impact 
of local extreme values or strong gradients can distort the results but the distortion is here reduced 
in comparison to soil sampling techniques. Moreover, these extremes are not significant for what 
concerns the external exposition of the environment. As a result, the exposition measurements one 
will obtain is more realistic in terms of public health. (MURITH & GURTNER, 1996).  

This technique is sensitive to the topography of the terrain (ideally, the area must be flat 
and smooth without any shielding objects) as well as to the vegetal cover (SOWA et al., 1989; 
LAEDERMANN et al., 1998). It requires therefore the definition of a certain number of parameters, 
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one of which being, here again, the vertical distribution of radionuclides. Attempts have been made 
to assess the vertical profile of radionuclides in soils out of in situ gamma spectrum properties and 
are discussed in MACDONALD et al. (1997). Good results have been achieved with the "peak to 
valley" method which evaluates the difference of backgrounds below and above a gamma peak of 
an in situ spectrum; this difference can be shown to be a function of a parameter which quantifies 
the depth distribution of the radionuclide. The method was successfully demonstrated by TYLER et 
al. (1996), TYLER (1999) and HE & WALLING (2000). 

In case of high contamination, the shielding of the detector may be necessary to avoid pile-
up overloading and high dead times. In an in situ comparison ran in the Chernobyl zone 
(MARTINCIC et al., 1999; BOSSEW, 1999) it has been shown that unshielded HPGe and NaI 
detectors are hardly operable for 137Cs contaminations above some 50 MBq/m2. For 200-300 
MBq/m2 in situ gamma spectrometry required heavy shielding, which makes the measuring process 
quite slow and cumbersome. Furthermore, shielding may reduce the field of view of the detector, 
depending of the geometric configuration of the lead shield, thus reducing the spatial 
representativity of the results. 

3.3. Airborne gamma measurements 
Airborne gamma measurements are particularly attractive for emergency situations since it 

can collect a very large number of measurements in a very short time. A spectrometer is mounted 
on an aeroplane or an helicopter and, according to IAEA (1991a, p. 17), at height 120 m, speed 140 
km/h and accumulation time 1 s (using large NaI detectors), the area represented by each sample is 
about 240 m x 280 m. The detection limits for 137Cs are 1 to 2 kBq/m2 for a surface source of 2 km2 
and 20 MBq for a point source (BOURGEOIS et al., 1995). The main interest of the method is that it 
can identify rapidly sources of radioactivity that have not been identified (IAEA, 1991a). The 
method is sensitive to the topography, the soil type, the vegetation cover and requires therefore a 
regular calibration with ground measurements of the radioactivity. 

3.4. The influence of global fallout 
Apart from highly contaminated regions in Eastern Europe, where the Chernobyl 

contribution to the 137Cs soil inventory can be 1000 times higher than the global fallout 
"background" (the 137Cs deposited all around the world following the atmospheric atomic bomb 
tests from 50-70’s), the latter is normally not negligible in Central and Western Europe. If the total 
inventories of 137Cs and 134Cs are known, as well as the local 134/137Cs ratio of Chernobyl fallout, 
the contributions of Chernobyl and global fallout can be separated mathematically. However, in 
most low-fallout regions of Western Europe, 134Cs is hardly detectable anymore 15 years after 
Chernobyl. In any case a considerable uncertainty of either contribution to total 137Cs must be taken 
into account due to error propagation.  

Chernobyl-90Sr can be calculated out of the total, if global-137Cs is known from the well-
known 90Sr/137Cs ratio in global fallout. A similar procedure has been used to separate the 
plutonium contributions (FEA 2001). Also in these cases the uncertainties are normally quite high. 

4. SPATIAL STRUCTURE OF THE DEPOSITION PATTERNS 
The main objective of the spatial analysis of radioactivity is the identification of a spatial 

correlation which would justify the spatial interpolation of the data in order to generate a map of 
deposition levels. Several methods do exist to reach this objective, one of which, the semivariance 
function, being the most frequently used. It is beyond the scope of this paper to explain it in detail 
and we refer the reader to the books of ISAAKS & SRIVASTAVA (1989) and PANNATIER (1996). In 
few words, the idea of the analysis of the semivariance is to calculate the variance of all pairs of 
points separated by a distance h, distance called the lag, and to display a mean value of these 
variances for increasing values of h. Such a plot is called semivariogram. The semivariance is 
defined as  
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where N is the number of pairs of points separated by h. z(xi) is the value taken by the variable at a 
location xi and z(xi+h) is the value of the variable at a point situated at a distance h from xi. Since 
most sampling campaigns are based on an irregular distribution of the sampling points, one uses a 
tolerance associated to the lag which is typically ± h/2 if all pairs of samples are used. One would 
expect from spatially correlated data to show an increasing variance with an increase of h since 
points closer in space are expected to be more similar than those located farther apart. Because the 
underlying processes of the data often have preferred orientations, values may change more 
quickly in one direction than another. As such, the semivariogram is a function of direction. 

Of particular interest is the value of the semivariance at short distances, which should be at 
its minimum. The nugget, for example, is the term used by geostatisticians to define the value of γ 
for |h| = 0. Unless measurements are repeated at exactly the same location, the nugget can be only 
an estimate. Although ideally the nugget should be zero, in practice this is almost never the case 
because of microscale variations and measurement errors. Identifying the proportion taken by the 
two components of the nugget effect is unfortunately very difficult unless the studied phenomenon 
and the measurement errors are perfectly known. The semivariograms for the Austrian and Greek 
measurements of 137Cs measurements, two well described data sets (BOSSEW et al., 1996, 2001; 
PETROPOULOS et al., 1996) that have been used for the preparation of the European Atlas of 
radiocaesium, are shown in Figure 2. One will immediately identify the clear spatial correlation for 
the Austrian data set while the Greek data set does not seem to show any.  

         

Figure 2. Semivariograms for the 137Cs measurements made in Austria (left) and Greece (right). 
 

By standardising the semivariance by the product of the standard deviation of the measures 
for each lag, one will not only normalise the plots and allow so their overlays for comparison, but 
the influence of extreme values within each lag will be strongly reduced. 137Cs measurements 
present indeed a highly skewed distribution, log-normal in general, that will affect the mean, 
variance and semivariance. 
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The standardised semivariance is defined as 
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Applied to the above mentioned data sets, the standardisation of the semivariograms will not show 
many differences for the Austrian data while the Greek data set will reveal a structure which is 
almost equal to the Austrian one (Figure 3). Both present for example a large nugget effect which 
contribute to 50% and 65% to the total variance for, respectively, the Austrian and the Greek data. 
Both also show a stabilisation of the semivariance at around 100 km, distance called the range, 
which corresponds to the distance at which measurements become spatially independent.  

         

Figure 3. Standardised semivariograms for the 137Cs measurements made in Austria (left) and 
Greece (right). 
 
 In a comparative study of eight 137Cs data sets coming from different countries, DUBOIS 
(2000) has shown with the help of standardised semivariograms that  
  
 the spatial structure of deposited 137Cs is often invisible at a first glance and that the reduction 

of the influence of extreme values by the standardisation of the semivariogram was always 
revealing a clear spatial structure of the variable; 
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 the spatial structures of the deposition patterns were highly variable in their dimensions and 
orientation but that their shapes were similar (the semivariogram models were nearly always 
spherical); 

  
 that the nugget effects were different between the countries, contributing from 20 to 70% to the 

total variance of the data, mainly because of the different sampling and measurement methods 
between these countries. The contribution of the fallout and microscale variations were 
estimated to contribute each to 10% of the total variance.  

5. IDENTIFYING HOT SPOTS 
As mentioned in the previous chapter, the 137Cs measurements used for the Atlas presented 

typically a log-normal distribution, highlighting the large amount of data with low levels of 
radioactivity and the presence of few extreme values to which one refers to with the term of “hot 
spots”. The frequency histograms for the Austrian and the Greek data sets are shown in Figure 4. 
These hot spots have a small size and one still discovers here and there small surfaces of a few 
hundred of m2 with a high level of contamination due to the Chernobyl accident that are 
contrasting strongly with the radioactivity observed in the surroundings. If these contaminated 
areas generally do not present risks in terms of public health, they can, under certain ecological 
conditions, give rise to levels of activity concentrations in the fauna and the flora living on these 
spots which exceed permissible levels for foodstuff. Well-known examples are cow and sheep milk 
on Alpine pastures, certain mushroom and deer. The identification and the description if these hot 
spots remains therefore a problem of public concern.  

 

Figure 4. Frequency histograms and log-normal fitting for 137Cs measurements made in Austria 
(left) and Greece (right). 
 

5.1. Analysis of the size of the deposition patterns 
Modelling the frequency distribution of hot spot sizes can be done in different ways. As a 

hypothesis, hot spots may be distributed like Greek islands as analysed by KORCAK (1938). An 
attempt has been made at a regional scale (FEA 1998, appendix A.2.3) to model the size of 
contamination patches as a function of the mean deposition density out of discrete sampling points. 
218 samples taken from a 9 km2 forested region were used to calculate quantity and spatial 
distribution of the 137Cs inventory. The mean deposition density was of 53 kBq/m2. The size of 
patches with  

 
 mean > 80 kBq/m2 was estimated to 8270 m2 and calculated (determined by 

interpolation of the actual data) as being equal to 7660 m2;  
 
 with mean > 100 kBq/m2 was estimated to 440 m2 and calculated as 620 m2. 
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A fairly good correspondence could be therefore be established and the regression model was  

lnF(C) = a + b ln(C), 

where F(C) is the largest area with AM of deposition density > C; the mean over all sampling 
points within F. The regression was quite good with r = 0.96 (p < 5e-6). According to this model, a 
hypothetical maximum > 150 kBq/m2 would be of around 2 m2 large. 

From the mean grid size of the sampling network a detection probability can be derived. 
Contamination patches with mean > 89 kBq/m2 were calculated to be missed with p > 95%. In fact 
one point with 103 kBq/m2 was found, the second largest was 86 kBq/m2. It must be stressed that 
these results apply only for the investigated area; in a region with different mean contamination the 
hot spot size frequency will obviously be different.  

5.2. Fractal analysis of sampling networks 

Another approach to the analysis of hot spot sizes is the use of fractals. MANDELBROT 
(1982) introduced the term of "fractal" to describe a continuous spatial phenomenon that present a 
similar structure, and so a similar spatial correlation, at different scales. LOVEJOY et al. (1986) 
have extended the use of fractals to the description of monitoring-networks heterogeneity. The 
fractal dimension of such a network, Dn, is defined by the variation of the mean number n(R) of 
monitoring stations or samples found within a circle with a varying radius R centred on each point 
of the network. A set of points has a fractal dimension Dn  if it satisfies the following condition  

(n(R)) ∝ RDn . 

and Dn can be deduced from the slope defined by the log(n(R)) plotted against log(R).  

LOVEJOY et al. have also shown that if Dn< E, here the Euclidean space which is equal to 
2, phenomena of fractal dimension Dp < E – Dn may not be detected by the network even if the 
density of the monitoring stations is infinite. For the Austrian data set, the plot is almost linear up 
to R=250 km and the fractal dimension is estimated as being equal to 1.43 (PAUSCH et al., 1998). 
Radioactive levels with Dp < 2 - 1.43 = 0.57 may consequently be missed because of the 
dimensional resolution problem. By selecting different classes of radioactive levels and by 
analysing their respective fractal dimension, one can show that the critical deposition density for 
zones to be missed by the Austrian sampling network are for the measurements ≥ 150 kBq/m2. 
However, 3 zones only where found in Austria with levels above this threshold. 

These points were already investigated by RAES et al. (1991) as well as PETROPOULOS et 
al., (2001) who have shown that the deposited 137Cs presented different fractal dimensions (the 
radioactive deposition is said to be multifractal) for different classes of radioactive levels and that 
these fractal dimensions were roughly inversely proportional to the radioactivity levels. This 
underlines furthermore the difficulty to identify hot spots.  

6. MAPPING 137CS  

6.1. Converting discrete information into a continuous one 
The representation of contamination levels with the help of isolines, a step which is 

currently integrated within any operation related to the management of the contaminated territories 
(IAEA, 1991b), is an attempt to illustrate a certain reality of the studied phenomenon. Maps 
provide not only useful information for decision-makers but they also help to establish correlation 
between different factors that have been observed at different places within the analysed region.  

These maps can be established on the basis of expert knowledge or mathematical models. 
Models can be either deterministic, the analysed phenomenon is described by physical models or 
empirical knowledge, or stochastic. The last involves probabilistic methods that aim to estimate the 
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probability of occurrences of a value of the studied variable at a specific location. Clearly, the 
spatial distribution of radioactivity in the environment is neither completely deterministic nor 
purely stochastic. The decision process that is involved in the choice of a mathematical approach 
and the determination of the many associated parameters is so complex that almost all attempts to 
described quantitatively or qualitatively the radioactivity in the environment will generate very 
different results. The European Tracer Experiment (KLUG et al., 1992) has shown that for a given 
source, a known height of release and a know source term, the prediction of the behaviour of a 
radioactive cloud over Europe by the main international meteorological offices would give very 
different predictions already within the few hours that follow the release of the radioactive 
material. The use of stochastic methods is therefore currently almost impossible to avoid.  

If a few authors have prepared hand drawn maps of 137Cs on the basis of expert knowledge 
(i.e. MCAULEY & MORAN, 1989), most have used spatial interpolation methods based on 
mathematics and/or statistics. The choice of a spatial interpolation method, the step that is required 
to convert punctual measurements into a continuous surface, depends on many parameters: the 
nature of the data, their density, their variability in space, the goals of the work, the computing 
time, the experience of the data analyst are a few examples (LAM, 1983). Applied to 137Cs, the 
methods found in the literature vary from linear models (BOSSEW et al., 1996), inverse distance 
weighted (IDW) functions (DE CORT et al., 1998), cubic splines (REALO et al., 1995), ordinary 
kriging (OK) (KANEVSKY, 1994) or generalised neural network residual kriging (ALLEN et al., 
1998). As a result, deposition maps can be very different even if the underlying information used to 
elaborate these maps is the same; their interpretation should therefore be done with prudence. More 
problematic is the fact that most maps are published without any information. In case a digital map 
is used for further modelling, errors can propagate and increase very rapidly (see i.e. HEUVELINK 
& BURROUGH, 1989). As a conclusion, the preparation of deposition maps has until now never 
been investigated in depth even if Geographic Information Systems (GIS) become every day more 
and more important in all the scientific fields that involve the spatial analysis of environmental 
variables.  

KANEVSKY (1994) and KANEVSKY et al. (1994, 1997) have published the first applications 
of geostatistical methods to 137Cs measurements related to the Chernobyl accident. If these methods 
are certainly attractive since these are based on OK, known as the Best Linear Unbiased Estimator 
(BLUE), the above mentioned publications do not provide any information on how these functions 
compete with others. There are, as a matter of fact, many arguments against the use of these 
techniques. Kriging, called after D. G. KRIGE, a South-African mining engineer, has been mainly 
developed for geological variables that present generally a smooth and continuous structure in 
space while atmospheric pollutants deposited on the ground present highly variable patterns. Like 
most of the of the interpolation/estimation methods, OK is based on a system of weighted linear 
combinations:  
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where n is the number of measurements z(x) used for the estimation and λi is the weight assigned 
to the value z(xi). The weights can be attributed in many different ways. They can be based on the 
inverse of the distance from a measurement to the point to be estimated or on a regression function. 
For what concerns OK, the weights are defined one the basis of the semivariogram which makes 
the approach very attractive since the spatial correlation is explicitly taken into account. A 
drawback is that the semivariogram is sensitive to skewed distributions of the data. If the 
standardisation of the semivariogram is not sufficient to reduce the influence of the extreme values, 
one has to transform the data into a normal distribution. Unfortunately, this will generate other 
problems as underlined by ISAAKS & SRIVASTAVA (1989, p. 194) since the back transformation of 
the estimates produces a biased result.  
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Neural networks have been also more recently applied in interpolation problems. The self-
learning ability of these algorithms is interesting since they do not require the analysis and the 
modeling of the spatial correlation which can be time consuming. Moreover, neural networks are 
able to handle non linear systems. Nevertheless, applied to deposited 137Cs, these functions have 
generated poor results (KANEVSKY 1995; KANEVSKY et al., 1996; DE BOLLIVIER et al., 1997) 
when these were not used in combination with geostatistical methods. 

The Spatial Interpolation Comparison (SIC97) test which is presented in this volume has 
confirmed the good behaviour of geostatistical methods for variables that behave like atmospheric 
pollutants that are deposited on the ground (DUBOIS & SHIBLI, 2001). More interesting, especially 
for emergency mapping systems, is their robustness which minimises the risk to generate very 
different results. One can therefore expect these to become more widely used in radioecology, in 
particular the methods like the log-normal kriging and indicator kriging functions, which have been 
developed to handle data sets that present highly skewed distributions (JOURNEL, 1983). 

The choice of the interpolation function will clearly affect the structure of the isoline 
levels. OK will better reveal to the eye the deposition patterns but might dissolve the hot spots 
while the IDW function will smooth less the data and, as a consequence, each sampling point 
might be surrounded by an isoline which renders the overall structure of the deposition patterns 
almost unreadable. The interpolation step is therefore often followed by an editing process aiming 
to provide a map that will match the requirements of its use (DUBOIS & DE CORT, 2001). 

6.2. Selecting isoline levels 

Isoline levels for maps of radioactivity are usually chosen according to the national 
intervention levels in order to facilitate the identification of the areas where an intervention is 
required. Since all measurements are associated with a certain uncertainty, using small isoline 
intervals would obviously not be recommendable.  

Another approach, based on the idea to select classes of homogeneous data, was therefore 
proposed by BOSSEW et al. (1996). To each 137Cs data, defined as an estimation of the mean 
inventory within 1 ha of a regionally representative exposed area, an uncertainty is attached which 
includes spatial variability of the inventory and process uncertainties. The total uncertainty is 
called the total process coefficient of variation, TPCV % = 100 x (Std. dev. / mean). For example, 
the TPCV for in situ gamma spectrometry was estimated as 13%; for 10 soil samples taken within 
an hectare the TPCV was 13.4%. As the latter was the method most commonly used for the dataset 
of the Austrian Cs map, the related value TPCV=13.4% was then used as the input for the 
following consideration. A reasonable spacing of isolines is clearly connected to the uncertainty of 
the data to be mapped. A classical statistical test, called operation characteristics, was chosen to 
define a separation distance as the distance of two values, from which they are distinguishable with 
a pre-set statistical significance. 

More precisely, the power function for α = β = 0.05, the null hypothesis H0=1 and a TPCV 
= 13.4% was calculated, yielding a H1 = 1.484 which can be interpreted as separation distance of 
meaningful contamination classes; with 101/5 = 1.585 which is near 1.484 we decided for a division 
of the decade into 5 classes, i. e. a 10 / 15 / 25 / 40 / 60 / 100 scheme. (α and β are the probabilities 
of errors of first and second kind, respectively. The power of a test, also called operation 
characteristics, is the probability of rejecting the null hypothesis H0 (expectation value µ0), i. e. 1-
β, as a function of the expectation value µ1 of an alternative hypothesis H1. If one selects a power 
value (1-β), the power function yields a µ1 which correspond to a H1 which is statistically 
distinguishable (significant in the sense of α and β) of H0. The separation distance d = µ1-µ0, with d 
= TPCV (xα+xß), xα two-sided, xß one-sided, related to the normal distribution. 

Another justification of isoline spacing may be the following: a data point, which sits at 
one side of an isoline due to its nominal value, may in reality well be on the other side due to its 
uncertainty. While this is unavoidable, one could require that the point must not (with significance 
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α) be located in the second next level zone. This is equivalent to an isoline distance equal to a 
value of the normal distribution associated to its critical region defined by α. For α = 0.01 one-
sided (e. g.; which means that with 99% probability a data point is not located in the second next 
level zone) and TPCV = 13.4% we get a d = 1.446, which is close to the above. 
6.3. Impact of measurement methods on the estimation process 

Any sampling procedure inevitably yields a spatial mean value of the variable in question; 
core sampling involves cores of some 5 to 10 cm diameter, bulked cores form averages of a 
(hopefully well defined) area; standard unshielded in situ gamma spectrometry produces averages 
of large fields. In any case one must be aware of the fact that any sampling procedure yields an 
estimation of the mean of the contamination of an area. The sampling support has to be chosen 
according to what spatial scale the quantity is supposed to refer to. The following will discuss 
briefly the implications the measurement method of 137Cs has on the mapping procedure.  

6.3.1. Soil samples 

In most applications, the surface of the soil samples will not be the same as the support of 
the estimates. Decision makers would rather prefer to have estimations of the deposited 
radioactivity on a support that would be of the size of a small town when counter-measures are 
planned. However, the increase of the support will inevitably reduce the spread and the distribution 
of the observed values, especially for radioactive measurements since these present a positively 
skewed distribution. As a consequence, conclusions drawn from a few soil samples that show a 
high level of radioactivity might lead to the conclusion to evacuate a whole city, with all the risks 
such a decision is associated with, while measurements made at the same locations by in situ 
gamma spectrometry would lead to the opposite decision.  

The conversion of the information provided on a support to one for another support can be 
mathematically solved by the adjustment of a distribution into another one, which would require in 
this context the preservation of the mean or better the median value if one wants to minimise the 
risks. This is clearly a complex problem which has not found yet an entirely satisfying solution 
since most of the assumptions one has to make are unverifiable.  

One will remind the reader that the same problem appears when converting Bq/kg of dry 
weight, into a measurement unit that is additive, typically Bq/m2, prior to the interpolation step. If 
such a conversion generates an additional uncertainty, soil samples remain nevertheless essential to 
calibrate the other measurement methods and to investigate local fluctuations. For the latter, 
collimated in situ gamma, or beta-counting might be other alternatives.  

6.3.2. Airborne measurements 

In a mapping point of view, airborne gamma measurements are quite difficult to handle 
since many observations are made along the track along which the aeroplane is flying. The 
preferential sampling strategy that is adopted will generate clustered measurements that will 
introduce a bias in the statistics supposed to describe the deposition on the investigated area 
(Figure 5). Another problem comes from the large amount of data to be handled. After the 
Chernobyl accident, more than 130 000 measurements were made in Sweden and 175 000 in 
Russia. Such a large number of data may generate computational problems, especially for 
geostatistical methods that are based on the definition of the spatial correlation which requires the 
calculation of the variance between all pairs of points. In practice, one would need, prior to the 
interpolation step, a treatment of the data that will decluster them and reduce the amount of 
information to be used with the help of moving windows that will average the data. As a 
consequence of such an unavoidable step, the data set will be smoothed.  
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Figure 5. Airborne gamma measurements made in Sweden 
 

6.3.3. In situ gamma spectrometry 

Unless the a priori unknown depth distribution of the contamination is of major concern, in 
situ gamma spectrometry has the advantage in case of surface contamination that it can produce 
fast results of average deposition densities over areas (~ 1 ha) which are large enough to average 
out minor sized hot spots which are not considered relevant for dose assessment. Uncertainties 
seem to be small enough for the data to be appropriate as input parameters for radioecological 
models aimed to dose estimations and possible countermeasures.  

On the other hand, in order to account for the variability in the 100 m - km range, which 
can affect dose estimation on a local (community, town) scale, spacing must be very dense, 
resulting in a probably unfeasible expense of a country-wide mapping program. This could maybe 
be compensated by a “stratified” in situ scheme, i. e. choosing a “typical” region for a dense grid, 
assessing representative values of the variability and the spatial correlation in the km range, and 
using the results as a database to decide how dense a sampling program on a country-wide level 
must be in order not to omit “hot zones” which may be relevant for dose assessment. 

Another approach could be an in situ program based on coarse data of an aerial survey, 
which can identify and separate regional contamination zones and allow for a rapid assessment of 
the frequency of larger “hot zones”. The in situ program could then be adjusted appropriately. 

However, ordinary in situ gamma spectrometry is problematic in highly structured terrain, 
like mountains. In such case one may either take high uncertainties into account, or rely on soil 
sampling or collimated in situ spectrometry.  

6.4. Improving the estimation of radioactive deposition with the help of additional 
information 

Deposited radioactivity can, in theory, be more accurately estimated with the help of 
related additional information. Such an information can take many different forms like 
measurements of other correlated variables or some prior knowledge on the studied phenomenon.  

 Almost all interpolation functions will deliver poor results on the edges of the analysed 
territory. Using measurements from neighbouring countries will provide useful information 
that will reduce the uncertainty at the borders of the territory. If a region inside of the 
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investigated territory has only a few measurements, the information provided by the 
measurements made more intensively in close areas might help to define the statistical 
distribution as well as the lower and upper boundaries of the measurements. Prior knowledge 
on the statistical distribution of the data can be efficiently used by the Bayesian kriging method 
to improve the estimations.  

 If only a few measurements of a variable are available but many measurements of a correlated 
variable are available, the co-kriging function can be used to improve the estimates of the first 
one. This requires however that a few measurements have been taken at the same locations to 
establish the correlation properly.  

A multivariate approach, which is very seducing in theory, might be very difficult to apply in 
radioecology. The relative concentration of the radionuclides may change in space and time in the 
radioactive clouds (DUFTSCHMID et al., 1987; JANTUNEN et al., 1991) and the expected correlation 
might be poor. Unfortunately, very few case studies involving a multivariate approach have been 
made and these works have focused mainly on the correlation between rainfall and the deposited 
radioactivity. The potential use of rainfall measurements to improve maps of deposited 
radioactivity still has to be demonstrated.  

7. CONCLUSIONS 
In the frame of the Radioactive Environmental Monitoring institutional support 

programme of the Environment Institute (Joint Research Centre, EC, Ispra), the Spatial 
Interpolation Comparison 97 (SIC97) was organised in order to highlight the various approaches of 
researchers confronted to a mapping problem as well as the latest developments in spatial statistics. 
If SIC97 involved only daily rainfall measurements instead of radioactive measurements, since 
most researchers are not familiar with the last, it was nevertheless expected to provide a good 
insight of the methods that could be used for the mapping of radioactivity in the environment. As a 
matter of fact, daily rainfall and radioactive deposits are expected to present similar spatial 
structures. By reviewing the factors that affect the spatial distribution of radioactivity in the 
environment as well as the measurement methods used to monitor this radioactivity, this paper has 
underlined the problems the statistician should be aware of prior to the spatial analysis. On the 
other hand, the main methods used to analyse environmental variables in a spatial point of view 
have been presented and sometimes illustrated with an application to radioactive measurements 
with the hope that radioecologists will become more aware of the potential offered by the methods. 
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1. INTRODUCTION 
Spatial interpolation is an essential feature of many Geographic Information Systems, or 

GIS. It is a procedure for estimating values of a variable at unsampled locations. A map with 
isolines is usually the visual output of such a process and plays a crucial role in decision making. 
Based on Tobler’s Law of Geography, which stipulates that observations close together in space 
are more likely to be similar than those farther apart, the development of models attempting to 
represent the way close observations are related can sometimes be very problematic. The 
approaches can be divergent and may therefore lead to very different results. As a consequence, an 
understanding of the initial assumptions and methods used is the key to the spatial interpolation 
process. 

Surprisingly, when spatial interpolation tools are integrated within GIS, they are often 
implemented in such a way that users have no real choice in selecting the best possible methods; 
and if they do have a choice, required input parameters are sometimes fixed, without any possible 
way to modify them. To my knowledge, there are currently practically no GIS in the market that 
can be used to perform a rigorous spatial correlation analysis and interpolation of the data. 
Frequently, additional statistical packages will be required. Without such additional tools, the 
spatial interpolation becomes a black box instead of a clear process where all parameters can be 
properly defined. This means that it becomes almost impossible to provide the experts and 
decision-makers with basic information on the method used. Finally, it is also difficult to provide 
the end user with information on the uncertainty associated with the estimates generated during the 
interpolation. 

One reason for the frequent blind use of spatial interpolation methods, and spatial statistics 
in general, has probably its origins in teaching. Despite the large variety of its applications, the 
discipline has been confined to those fields where it has seen its major developments. The progress 
made in spatial statistics is therefore usually presented only in journals dedicated to statistics, 
mining, and petroleum engineering. As a consequence, GIS users who have a different technical 
background often do not have an in-depth knowledge of such spatial interpolation techniques. 
Furthermore, since the conventional tests used in basic statistics usually generate some kind of 
categorical answer, the prerequisite experience and statistical knowledge necessary for the proper 
use of spatial interpolation techniques are often discouraging to the neophyte. Nevertheless, during 
the last couple of years, the diversity of the applications of these methods has stimulated the 
publication of new books and new case studies, as well as a number of conferences on the subject. 

To better understand spatial interpolation techniques so that practitioners can grasp the 
“science behind the technology”, a kind of contest has been organised on the AI-GEOSTATS 
mailing list (www.ai-geostats.org) in 1997. Called “Spatial Interpolation Comparison 97 (SIC 97)”, 
this scientific exercise where participants were invited to estimate daily rainfall measurements at 
unsampled sites as well as their extreme values, was organised in the frame of the Radioactive 
Environmental Monitoring institutional support programme of the Environment Institute (Joint 
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Research Centre, EC, Ispra). The expected objectives of SIC97 were manifold. The first one was to 
give a more general overview of existing spatial interpolation methods and to highlight the latest 
developments in spatial statistics. If daily rainfall measurements have been distributed to the 
participants, a variable everyone is familiar with, their conclusions can nevertheless be easily 
extended to the problem of mapping radioactivity in the environment. Daily rainfall and 
radioactivity deposited on the ground after an accidental release in the atmosphere do not only 
behave in a similar way, i.e. the variables present usually a global trend and strong local 
fluctuations, but they are also intimately correlated since rainfall is the main factor affecting the 
deposition of radioactivity released to the atmosphere. The participants were therefore also invited 
to evaluate their methods for the monitoring of the radioactivity in the environment, this in 
situation of routine or emergency. 

With around 20 contributions, SIC 97 covered both standard and well known methods, 
including Inverse Distance Weighting, Ordinary Kriging, Radial Basis Functions, Neural 
Networks, Fuzzy Logic Interpolators, and even unpublished techniques such as Class Kriging. 
These publications have been published on the Internet in a special issue of the Journal of 
Geographic Information and Decision Analysis (GIDA, Vol. 2, N°.2, 1998) but only 13 are 
reproduced in this Volume. In addition to the papers published here, the reader will find in the 
journal the following contributions:  

 
• B. Rajagopalan & U. Lall. Locally weighted polynomial estimation of spatial precipitation.  

• Ali. Nonparametric spatial rainfall characterization using adaptative kernel estimator.  

• A. Saveliev, S. S. Mucharamova, G. A. Piliugin. Modeling of the daily rainfall values using 
surface under tension and kriging.  

• R. Bruno, B. M. Capicotto. Geostatistical analysis of pluviometric data: IRF-K approach.  

• G. Gallo, M. Spagnuolo, S. Spinello. Rainfall estimation from sparse data with fuzzy B-splines.  

• S. Lee, S. Cho, P. M. Wong. Rainfall prediction using artificial neural networks.  

2. COMPARING THE CONTRIBUTIONS TO SIC97 
 The participants to SIC97 were invited to describe the methods they used and the related 
decision-process. To facilitate the comparison of the results they obtained, the participants were 
asked to provide the reader with the following information:  
 
1. the minimum, maximum, mean, median and standard deviation of the 367 estimated values; 
2. the root mean squared error; 
3. the bias of the errors,; 
4. the mean relative and absolute errors; 
5. the correlation between the errors; 
6. a correlation plot of the estimated values against those observed;  
7. a map with isolines showing the levels of the estimated values.  

The performance of the methods used had to be discussed as well in terms of computational time 
and ease of automatisation in view to assess their potential use in the frame of an emergency-
mapping system. 
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3. DESCRIPTION OF THE DATA 

3.1. Observed rainfall data 
The data distributed to the SIC97 participants were 100 daily rainfall measurements made 

in Switzerland on the 8th of May 1986 which were randomly extracted from a dataset of 467 
measurements. The participants had to estimate the rainfall at the 367 remaining locations. The 
measurements were in units of 1/10th of a mm, but values ranging from 1 to 10 were often 
observed due to air condensation. Figure 1 shows the locations of the 367 measurements for which 
the values had to be estimated (diamonds) while those of the 100 measurements used for the 
estimation are presented with proportional symbols (filled circles).  
 

 
Figure 1. Proportional symbols of the 100 observed data and locations of the values to be 
estimated 
 
The statistics of the 100 measurements are given in Figure 2.  

  
N 100 
Min. 10 
Max. 585
Mean 180.15
Var. 13614.47
Std. dev. 116.68
Skew. 0.956
Kurt. 0.467

 

Figure 2. Statistics of the 100 observed rainfall value 
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3.2. Digital elevation model and country borders 

A digital elevation model (DEM) with a resolution of around 1 km * 1 km was provided as 
secondary information so as country borders used to define the area under study (Figure 3).  
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Figure 3. Digital Elevation Model of Switzerland (1 km * 1 km) and country borders 

 
3.3. Description of the data to be estimated 

The co-ordinates of the sampling locations of the remaining 367 daily rainfall 
measurements were distributed to the participants in order that estimates could be made. The 
observed rainfall values for these locations were made available only after reception of the 
estimations of all the participants. The statistics of the 367 measurements are given below (Figure 
4).  

  
N 367
Min. 0
Max. 517
Mean 185.09
Var. 12254.70
Std. dev. 110.70
Skew. 0.569
Kurt. - 0.373

 

Figure 4. Statistics of the 367 rainfall data points to be estimated. 
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3.4. Description of the full data set 
Figure 5 presents the complete 467 rainfall data in terms of proportional symbols and 

summarised with their statistics and associated histogram (Figure 6).  
 

-150000 -100000 -50000 0 50000 100000 150000

-100000

-50000

0

50000

100000

Points to be estimated
Observed data

 
Figure 5. Proportional symbols for the whole rainfall data set 

 
  

N 467
Min. 0
Max. 585
Mean 184.24
Var. 12603.13
Std. dev. 112.26
Skew. 0.661
Kurt. - 0.193

 

Figure 6. Statistics of the complete rainfall data set. 
 

4. SOURCES OF THE SIC97 DATA SETS 
The gathering of the rainfall data, provided by Giovanni Graziani from the Environment 

Institute of the Joint Research Centre (Ispra, Italy), has been undertaken, under JRC-Ispra funding, 
by the Air pollution Group at Imperial College, London.  

The Digital Elevation Model has been provided by EROS Data Centre from the U.S. 
Geological Survey (USGS). http://edcwww.cr.usgs.gov/  
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The country borders are extracted from ESRI's Digital Chart of the World (DCW) 
provided by ESRI.  

If you wish to test your methods and experience on the same case study, the data have been 
made available on the Internet1. The point data set correspond to a simple ASCII file with, for each 
measurement, an identifier given as an integer, the co-ordinates X and Y in meters and the rainfall 
measurement given in 1/10th of a mm. The data have been projected with a Lambert azimuthal 
projection system. Country borders of Switzerland are available as an Autocad Interchange 
Drawing file (.dxf), the DEM is provided as an ASCII grid projected in order to match with the 
point data sets and the country borders. 

 

                                                 
1 G. Dubois, 1998. Spatial Interpolation Comparison 97: Foreword and Introduction. GIDA, Vol. 2, 
No. 2, pp. 1-10. 
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Abstract. This paper discusses the use of simple good sense in the spatial prediction of rainfall 
measurements in Switzerland. The method consists of a forecast based on the values of the 
available observations combined with topographic knowledge of the Swiss territory. Comparison 
of our subjective estimates with the true measurements is completed and yields surprisingly good 
results.  
 
Keywords: Interpolation; Swiss Bayesian prior; Rationality; SPLUS.  
 

1. INTRODUCTION  
The analysis and interpretation of spatial data sets forms an important part of geostatistics 

and is unfortunately highly human dependent. For instance, it is well known that different 
individuals will take different approaches (Englund, 1990), yielding a large assortment of distinct 
solutions. This is partly due to the variety of available spatial interpolation methods, ranging from 
simple intuitive predictions to more sophisticated and complex procedures. Some of the more 
commonly used interpolation methods (Cressie, 1993) include:  

• Inverse distance weighting and nearest neighbor  

• Polynomial trend surfaces and splines  

• Kriging  

• Likelihood and Bayesian analysis  

• Neural networks  

Most of these methods are in fact only classes of procedures, which contain an incredible number 
of possible variations accessible to the researcher. Moreover, several sources of variability arise 
from the data themselves and involve subjective decisions on the part of the individual. These 
include data transformations, detection and handling of outliers or even more nasty inliers, choice 
of estimators for dependent observations, variability of estimators, model selection, choice of 
hardware and software. An attempt of robustness in variogram estimation and fitting for kriging is 
proposed by Genton (1996, 1998a, 1998b, 1998c), and an example of application to sediments data 
of Lake Geneva, Switzerland, can be found in Furrer and Genton (1998). Having such a large 
diversity of methods, yielding so many different results (Englund, 1990), one can legitimately ask 
whether spatial statistics is worth the trouble ? In this paper, we try to give some possible answers 
to this question.  
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2. SIMPLE GOOD SENSE PREDICTION 
In this section, we describe briefly the simple good sense method that the first author used 

for the spatial prediction of rainfall in Switzerland. First, the n=100 available locations of rainfall 
are plotted, and each corresponding value of amount of rainfall is labeled with the function 
identify in SPLUS. Second, the 367 locations where rainfall has to be predicted are plotted, 
and the corresponding amounts of rainfall are estimated by eye. We used the information given by 
the 100 known rainfall amounts, as well as some subjective knowledge of the Swiss territory, 
which can be viewed as a Swiss Bayesian prior. For example, we are conscious of the sunny 
micro-climate of the county of Wallis, as well as the locations of mountains and plains. Moreover, 
one of the fundamental principle of geostatistics has been applied: observations which are closely 
located in space are more likely to be similar than observations which are far away. It is also well 
known that the precipitations on the lee side of mountains is much higher than on the luv side. 
Thus the 100 known observations helped to determine on which side of the mountains it rained. 
Note that in our prediction procedure, no additional information from any other spatial statistical 
method has been used: this is pure good sense !  

3. DISCUSSION OF THE RESULTS  
The overall performance of our method in predicting the remaining 367 rainfall data is 

summarized in Table 1. We consider the true values Z(x), the estimated values (by simple good 
sense) )(Ẑ x , the errors )Z()(Ẑ)e( xxx −= , the absolute errors |e(x)| and the relative errors 
|e(x)|/ Z(x). For each of these quantities, the minimum, the maximum, the mean, the median and 
the standard deviation is computed.  

 
 Min Max Mean Median Std. Dev. 

True values 0 517 185 162 111 

Estimated values 13 450 176 150 94 

Errors -318 223 -9 2 72 

Absolute errors 0 318 50 36 52 

Relative errors 0 10.00 0.40 0.23 0.78 

Table 1. This table presents the minimum, the maximum, the mean, the median, and the standard 
deviation for the 367 true rainfall values, the estimated values, the errors, the absolute errors, and 
the relative errors. 

 
The distribution of the estimated values by simple good sense is in agreement with the 

distribution of the true values. This is confirmed by a plot of estimated values (horizontal) against 
true values (vertical) in Figure 1.  
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Figure 1. Plot of estimated values (horizontal) against true values (vertical). 
 
A small positive bias is however revealed. A plot of observed (true) values against residuals in 
Figure 2 indicates that small values are generally overestimated whereas large values are 
underestimated.  
 

 
Figure 2. Plot of observed (true) values (horizontal) against residuals (vertical). 

Figure 3 shows the maps for the rainfall prediction by simple good sense and the corresponding 
absolute errors. 
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Figure 3. Maps for the rainfall prediction by simple good sense (the 10 lowest values are 
represented by circles and the 10 highest by squares) and the corresponding absolute errors. 

 
Proportional plots of the absolute errors and relative errors in Figure 4 indicate the locations of the 
smaller or higher errors. It seems to be correlated with the smaller or higher rainfall measurements. 
The root mean squared error is RMSE=72 and should be compared with other predicting methods. 
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Figure 4. Proportional plots of the absolute errors and relative errors for the simple good sense 
prediction of rainfall amounts. Positive errors are represented by red circles, and negative errors 
by blue circles. 
 

Table 2 compares the prediction of the ten lowest values and the ten highest values of the 
initial data set with the corresponding estimated values. This method identified four respectively 
five locations of the ten highest respectively ten lowest values of the initial data set, which are 
written in bold in Table 2  

 
Ten lowest values ten highest values 

true values estimated values true values estimated values 

0 56 434 288 
0 22 434 224 
0 19 441 441 
0 28 444 450 
0 72 445 311 
1 13 452 452 
5 55 493 330 
6  36 503 185 
8 43 517 204 

10 10 585 585 

Table 2. This table compares the prediction of the ten lowest values and the ten highest values of 
the initial data set with the corresponding estimated values. The simple good sense method 
identified four respectively five locations of the ten highest respectively ten lowest values of the 
initial data set, which are written in bold. 
 

The performance in predicting the lowest and the highest 10 rainfall measurements can 
also be summarized by the root mean squared RMSEmin=16 and RMSEmax=10 respectively. It seems 
that higher values are more accurately predicted than lower ones. This method of rainfall 
prediction can be useful for the monitoring of accidental releases of radioactivity in the 
environment, because it doesn't require computations at all, but only some knowledge of the Swiss 
territory. The procedure is straightforward and almost automated. As rainfall is strongly correlated 
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with radioactive fallout of accidental releases, this method can easily be used in emergency 
situations of nuclear accidents for making fast decisions. In the extreme case, it is sufficient to 
consult a meteorological map to predict the rainfall and winds. Using this information, citizens can 
be informed within a matter of hours. Of course, this ad hoc method is imprecise but much faster 
than any other. 

4. CONCLUSIONS  
In this paper, the use of simple good sense in the spatial prediction of rainfall 

measurements in Switzerland has been discussed. The method consists of a forecast based on the 
values of the available observations combined with topographic knowledge of the Swiss territory. 
Comparison of our subjective estimates with the true measurements has been completed and has 
yielded results which are not too far from the true values. Fortunately, the results of this method 
are worse than those from a robust spatial statistics methodology used by the authors in another 
analysis. This would lead to support that spatial statistics is worth the trouble. However, it would 
be very interesting to compare the simple good sense method with methods used by other 
participants, for example by mean of the RMSE. We believe that simple good sense would not be 
the worst.  
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Abstract: In order to estimate rainfall magnitude at unmeasured locations, this entry to the Spatial 
Interpolation Comparison of 1997 (SIC97) used 2-dimensional, anisotropic, inverse-distance 
weighing interpolator (IDW), with cross-validation as a method of optimizing the interpolator’s 
parameters. A jackknife resampling was then used to reduce bias of the predictions and estimate 
their uncertainty. The method is easy to programme, “data driven”, and fully automated. It 
provides a realistic estimate of uncertainty for each predicted location, and could be readily 
extended to 3-dimentional cases. For SIC97 purposes, the IDW was set to be an exact interpolator 
(smoothing parameter was set to zero), with the search radius set at the maximum extend of data. 
Other parameters were optimized as follows: exponent=4, anisotropy ratio=4.5, and anisotropy 
angle=40°. The results predicted by the IDW interpolator were later compared with the actual 
values measured at the same locations. The overall root-mean-squared-error (RMSE) between 
predicted and observed rainfall for all 367 unknown locations was 6.32 mm of rain. The method 
was successful in predicting 50% and 65% of the exact locations of the twenty highest and lowest 
measurements respectively. Of the measured values, 65% (238 out of 367 data points) fell within 
jackknife-predicted 95% confidence intervals, uniquely constructed for each predicted location. 
 
Keywords: Cross Validation, Jackknife, Uncertainty, IDW, Anisotropic, Automated, Spatial 
Interpolation, GIS. 
 

1. INTRODUCTION 

In this article, an anisotropic inverse distance weighing interpolator (IDW) is used to make 
the required estimates of rainfall at 367 locations, based on a “training” set of rainfall 
measurements at 100 rain-gauges located throughout Switzerland. The method consists of two 
parts. First, the optimum set of parameters for the IDW method is selected via cross-validation and 
the estimates are made using this optimal interpolator. Second, the uncertainty of each of the 
estimates is calculated via the jackknife procedure2. 

The method is data-driven and fully automated (i.e. does not require preprocessing), which 
could be of value in an emergency situation requiring rapid yet justifiable results. Although the 
method attempts to optimize all the IDW parameters (i.e. weighting power, smoothing parameter, 

                                                 
2 Due to similarity of mathematics involved, cross validation and jackknifing are often confused in the 
literature (Davis, 1987). Cross-validation is used to find the “best” model among a finite number of 
competitors, i.e. it is applied to the interpolator to choose the optimal set of parameters. With the 
interpolation model already selected via cross-validation, jackknife is used to reduce the bias and to construct 
the approximate confidence intervals on the estimates. 
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anisotropy ratio, anisotropy angle, and search radius) some parameters which are known or 
measured a priori (such as anisotropy angle determined by known wind direction), can either be 
fixed or limited to a user-defined range. This could result in improved performance and added 
realism of the interpolator. As applied in this paper, the technique fixes two and optimizes the other 
three out of five possible IDW parameters. 

Compared with other methods, most notably kriging, the IDW method is simpler to 
programme and does not require pre-modeling or subjective assumptions in selecting a semi-
variogram model (Henley, 1981). It provides a measure of uncertainty of the estimates that is 
directly related to the values being estimated, in contrast to kriging standard deviation which is 
based on the modeled semi-variogram (Adisoma & Hester, 1995). In addition, the IDW method is 
applicable to datasets of small size for which the modeled semi-variograms are very difficult to fit 
(Rasmunsen-Rhodes & Mayers, 1993), and it is flexible enough to model the variables with a trend 
or anisotropy present. The method is not limited to predicting rainfall measurements and it can be 
useful in problems as diverse as mapping of crop spraying, estimating grade and exploration 
feasibility of mining reserves, monitoring extend of contaminated groundwater plumes or 
quantitatively assessing the extent of contamination in aquatic sediments (Tomczak & 
McCorquodale, 1997). 

2. METHODS 

The object of any two-dimensional interpolation is to estimate the value of a parameter (Z), 
at the unmeasured locations (Zj) based on finite set of measurements of this parameter at other 
locations (Zi). In SIC97 dataset, the parameter Z represents daily rainfall intensity. The IDW 
algorithm, as applied to each location being estimated, is based on Equation 1 (Keckler, 1995; 
Song & DePinto, 1995) 
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where Zj is the interpolated value of a grid node, Zi are the neighboring data points, hij are the 
distances between the grid node and data points, β is the weighing power, and δ is the smoothing 
parameter. 

In an isotropic case (i.e. when the weights are not a function of direction), Equation 1 can 
be used “as is” with the separation distance (hij) calculated by a simple Euclidean distance 
equation: 

h x yij = +( ) ( )∆ ∆2 2      (2) 

 
Where: ∆x and ∆y are the horizontal and vertical distances between the interpolated node “j” and 
the contributing data point “i”.  

 

In situations when inclusion of anisotropy is appropriate (such as in rainfall intensity, 
likely affected by wind direction and topography) the actual distance (hij) is replaced by the 
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effective distance (hij-eff) which is calculated below (Keckler, personal communication, 1997). The 
equation is broken down for clarity. 
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where θ is the anisotropy angle (the direction of “preferred” anisotropic axis, counter-clock-wise 
from positive x-axis) and ρ is the anisotropy ratio (in isotropic case, ρ=1). 

Conceptually, the effective distance can be thought of as shortening the distance between a 
data point and the interpolated node by the factor equal to the anisotropy ratio. The data point’s 
relative influence on the interpolated node increases as the direction of line between the two points 
approaches the anisotropy angle. This concept is illustrated in Figure 1. 

Actual data point

Effective data point

Node being interpolated (0,0)

θθθθ

x

y

b

a

ρ=a/b
hij=a

heff

 

Figure 1. Illustration of the concept of anisotropy-corrected effective distance. 

2.1. Cross-validation 

IDW interpolator is driven by the set of parameters whose values are usually chosen at the 
operator’s discretion. Parameters include: 
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• β - the weighing power (exponent) 

• δ  - the smoothing parameter 

• ρ - the anisotropy ratio 

• θ - the anisotropy angle 
 
In addition, the search radius can be adjusted, determining the number of neighboring data points 
that are used when interpolating each node. Restricting the search radius can make the algorithm 
more efficient when the sample size is large and it can provide means to tackle a “trend” in the data 
(i.e. lack of stationarity). Searching algorithm can also be fine tuned by incorporating directional 
search (e.g. searching quadrants) or treatment of repeated measurements (e.g. averaging data points 
that are within some threshold distance). Although all of the above parameters can be adjusted, 
often some of them are known a priori, such as the anisotropy angle (but usually not ratio). Hence, 
based on the knowledge of the nature of data being sampled and processes involved (e.g. 
prevailing wind direction etc.) some IDW parameters can be fixed before the calculations start. 
Values of other parameters have to be selected and this choice greatly effects the results of the 
interpolation. 

Although no measures are known that would or could be universally applied to choose the 
optimal set of parameters, cross-validation (a.k.a. “leaving-one-out” method) is often used to select 
an interpolator from finite number of candidates (Davis, 1987). The method is based on removing 
one data point at a time, performing the interpolation for the location of the removed point using 
the remaining samples (i.e. pretending that removed point does not exist), and calculating the 
difference (residual) between the actual value of the removed data point and the estimate for this 
point obtained from remaining samples. This scenario is repeated until every sample has been, in 
turn, removed. The overall performance of the interpolator is then evaluated as the root-mean of 
squared residuals (Davis, 1987; Song & DePinto, 1995), 
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where RMSE stands for root-mean-squared error, Zi(int) is the interpolated value of variable at point 
i estimated from remaining n-1 points, Zi is the measured value of variable at the removed point i, 
and n is the number of data points. 

Low root-mean-squared error (RMSE) indicates an interpolator that is likely to give 
reliable estimates for the areas where the rainfall intensity is not known. The cross-validation is 
performed with different set of parameters each time and the set with the lowest RMSE is taken as 
optimal. The step size and range of values for each parameter during the fitting procedure is user-
specified. With IDW parameters selected via cross-validation, a jackknife resampling can be used 
to reduce bias of predicted values and to estimate their uncertainty. 

2.2. Jackknife 

In jackknife, all n samples (measured locations) are used to estimate parameter Z at 
interpolated node “j” (ZALL). The jackknife then proceeds by removing one observation at a time 
from the original dataset (one rain gauge from 100 known training locations), and repeatedly 
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estimating value of parameter Z at node “j” from the remaining (i-1) data points. Let Z-i
 be the 

corresponding estimate when ith sample is omitted. A pseudo-value (Z*i) corresponding to each 
omitted point, is calculated as follows (Tukey, 1970): 

Z n Z n Z i ni ALL
∗

−= ⋅ − − ⋅ =( ) ; , , ... ,1 1 21     (5) 

where n is the sample size, ZALL is the parameter estimate for node j using all n data points, Z-1 is 
the parameter estimate when ith sample is removed, Z*

i is a pseudo-value estimate for node “j” 
corresponding to ith data point being removed. 

The jackknifed estimator of parameter Z at location “j” is the mean of all pseudo-values for the 
node “j” 
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where ZJ is the jackknife estimator of parameter Z. 

The jackknife procedure is then repeated and the values of ZJ and σJ are calculated for each 
estimated node location “j”. The use of pseudo-values allows to assess the precision of the 
jackknife estimator through estimated standard error σJ  which is defined as (Adisoma & Hester, 
1996; Efron & Gong, 1983): 
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If pseudo-values are treated as if there were n independent estimates, a confidence interval on the 
estimate can be constructed. Under the assumption that the statistic: (ZJ-Z)/σJ follows Student’s t 
distribution, a 100(1-α)% confidence interval on ZJ is given by (Adisoma & Hester, 1996; Efron & 
Gong, 1983): 

Z tJ n J± ⋅−α σ/ ,2 1      (8) 

Where tα/2,n-1  is the is the value of CDF of Student-t distribution at 1-α confidence level, with n-1 
degrees of freedom. 

This approximation may not always be valid (Miller, 1964), but it should perform quite 
well providing the value of parameter Z does not depend essentially on only one or two sample 
points zi (Tukey, 1970). Larger sample size will also improve the validity of such constructed 
confidence interval, courtesy of the Central Limit Theorem. 

Figure 2 schematically shows the procedures involved in both cross-validation and 
jackknifing based on 5 hypothetical data-points for the location “j” being estimated. 



 56

1
1

4
3

5

2

1

4
?

5

2
1

?
3

5

2
1

4
3

5

?
1

4
3

?

2
?

4
3

5

2

CHANGING IDW PARAMETERS:
- Power
- Anisotropy Ratio
- Anisotropy Angle
- Smoothing Parameter
- Search Radius

POINT 5 REMOVEDPOINT 4 REMOVEDPOINT 3 REMOVED

PSEUDO-ESTIMATE, i=1

POINT 2 REMOVEDPOINT 1 REMOVED

ALL DATAPOINTS

SET OF IDW PARAMETERS
WITH MINIMUM  CROSS-

VALIDATED RMSE VALUE IS
SELECTED

1

4
?

5

2 1

?
3

5

21

4
3

5

? 1

4
3

?

2?

4
3

5

2

OPTIONAL VARIABLES SUCH
AS ALTITUDE CAN BE
INTRODUCED

- JACKNIFE  BIAS-REDUCED ESTIMATE OF PARAMETER “Z” @ NODE “j”
- JACKNIFE STANDARD ERROR OF THE ESTIMATE (CONFIDENCE INTERVAL)

JACKKNIFE

CROSS-VALIDATION

1

4
3

5

2

node jnode j

ZJ
*(5)ZJ

*(4)ZJ
*(3)ZJ

*(2)ZJ
*(1)

node j node j

node j

node j

ZJ ± σJ

PSEUDO-ESTIMATE, i=5PSEUDO-ESTIMATE, i=4PSEUDO-ESTIMATE, i=3PSEUDO-ESTIMATE, i=2

MINIMUM RMSE?
CHANGE PARAMETERS, REPEAT

YES

NO

NEXT NODE (j+1) TO BE JACKNIFED

RESULTS FOR NODE “j”

REPEAT

 

Figure 2. A schematic flow diagram of cross-validation and jackknifing for five hypothetical 
observed data points and the prediction made at node “j”. 

3. RESULTS 
The interpolation method used here consisted of two steps: first the IDW parameters were 

optimized via cross-validation. To make the calculations more efficient and shorten the processing 
time, two parameters considered relatively less important were fixed a priori: the search radius was 
set to the maximum extent of the data and the smoothing parameter was set to zero (i.e. resulting in 
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an exact interpolator since the uncertainty of individual rain-gauge measurements were assumed to 
be much lower than the uncertainty of the predictions). The remaining three parameters were 
simultaneously adjusted during the procedure (exponent: range 1 to 10, step 0.5; anisotropy ratio: 
range 1 to 10, step 0.5; anisotropy angle: range 0º to 170º, step 10°). The procedure produced the 
set of optimal (lowest cross-validated RMSE=56.44) IDW parameters: Exponent=4, Anisotropy 
Ratio=4.5 and Anisotropy Angle=40°. 

A jackknife was then used for each estimated point to reduce bias and to estimate the 
standard error and the resulting confidence intervals for each estimated point. 

After the entries to the SIC97 were submitted, the true measured rainfall values at all the 
367 locations to be estimated were released to participants to allow for the evaluation of the 
performance the interpolators used. The performance of the IDW method along with the statistics 
of true measurements for all 367 estimated data points are listed in Table 1. The estimators of 
method’s performance selected by SIC97 organizers were: Root-Mean-Squared Error (RMSE), 
Mean Absolute Error (MAE), and Mean Relative Error (MRE). Since the presented method has the 
ability of calculating the error and confidence interval for each estimated point, the summary of 
lower and upper 95% confidence levels for each calculated statistic, based on all predicted values, 
is also listed. 

 

Method min max mean median std. dev. 

Observed 0.0 517.0 185.8 162.0 111.2 
IDW (all points) 16.0 562.5 185.9 151.9 104.0 
Jackknife “Corrected” IDW 0.0 787.6 185.3 145.2 127.0 
Lower 95% Confidence Int. 0.0 344.1 117.2 99.5 93.4 
Upper 95% Confidence Int. 22.2 1275.8 264.4 209.2 173.3 

 
Method MAE MRE RMSE3 

IDW (all points) 44.0 0.543 63.2 
Jackknife “Corrected” IDW 58.5 0.565 83.9 

Table 1. Comparison of the estimated and measured values (n=367), 1/10 mm of rain. 
 

4. DISCUSSION 

As indicated in Table 1, the jackknife corrected estimates did not improve the performance 
of the interpolator for this particular application (higher RMSE than original prediction), and 
therefore the set of estimates using all training points (RMSE=63.2) will be used in the remainder 
of the discussion. Jackknife is still used for estimates of uncertainty of IDW predictions. 

 

                                                 
3 Please note that the RMSE value calculated in Table 1 is a measure of discrepancy between rainfall values 
estimated via interpolation and those actually measured at the same locations, but unknown at the time of 
interpolation. In contrast, the RMSE cited on page 6 and in the first paragraph of this section, is used as an 
indicator in optimization of parameters during cross-validation. The two RMSE values are unrelated and 
should not be confused. 
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Figure 3 shows the observed (true) rainfall measurements plotted against predicted ones 
for the same locations. 
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Figure 3. Observed vs. predicted rainfall for 367 “unknown” rain-gauges. 

 
The linear correlation coefficient of 0.83 confirms relatively good overall agreement (with no 
regard to spatial component in the data) between predicted and measured values.  

The overall predicted contour map is shown in Figure 4. The black circles show the 
relative magnitude of predicted rainfall (circle diameter) and location of all the 100 training sites 
from which the predictions were constructed. Contours exhibit a strong anisotropy in an 
approximate NE-SW direction consistent with the anisotropy ratio of 4.5 and anisotropy angle of 
40° counter-clock-wise from the east (N60°E) used in the IDW interpolator. 
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Figure 4. Predicted rainfall contours based on 100 given training points, superimposed on 
Switzerland’s boarder, shown (size of dots is proportional to the magnitude of the recorded 
rainfall). 
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The bias of the predictions and independence of residuals from the magnitude of predicted 
values can be assessed from Figure 5. It shows the distribution of errors (value predicted minus 
value observed, or residual) as a function of the magnitude of observed values. 
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Figure 5. Distribution of residuals as a function of the magnitude of observed rainfall. 
 

The residuals seems to have no overall bias (mean=0.0, s.e.=3.3 , n=363), with a weak 
tendency of being negatively correlated with the magnitude of observed rainfall (Pearson’s R=-
0.39). The absolute value of errors show weak positive correlation with the magnitude of the 
rainfall (R=0.31). Although this linear correlation analysis does not capture the spatial nature of the 
dataset, it could indicate the possibility of a problem related to the underprediction of high values 
which may be of an issue from the risk analysis perspective. The spatial distribution of errors 
(predicted versus observed rainfall values) is illustrated in Figure 6.  
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Figure 6. Error between observed and predicted values (predicted minus observed) with the size of 
the dots proportional to the absolute value of the error. Open circles signify negative errors 
(under-prediction) and solid circles indicate positive errors (over-prediction). 
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Figure 7 shows the distribution of predicted uncertainties of estimated values as calculated 
from Equation 7 (i.e. standard errors calculated via jackknife, for each estimated location). 
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Figure 7. The value of the calculated jacknife standard error for each predicted point. Size of 
symbols is proportional to the magnitude of the error and uses the same scale as Figure 6. 

When Figure 6 and 7 are compared, the overall pattern and magnitude of predicted 
uncertainties and observed errors is similar, with the highest uncertainty (for both actual errors and 
predicted uncertainties) concentrating in the west and south part of the country. Of the measured 
values, 65% (238 out of 367 data points) fell within 95% confidence interval as predicted for each 
estimated point with Equation 8 (i.e. based on jackknifed standard error for each predicted point). 

The ability to predict extreme values is an important benchmark in evaluating the 
performance of an interpolator. Some of the highest measured rainfall values were included in the 
set of 100 training data points and, therefore, were not estimated via interpolation. To facilitate a 
fair discussion on the method’s performance, only the extreme values in the predicted dataset (367 
data points) are included in the following section. Figure 8 shows the distribution of ten highest 
and lowest rainfall values as requested by SIC97 organizers (both predicted and observed as 
indicated in the legend).  

Of the extreme values, 20% of the highest and 30% of lowest values were predicted 
accurately with the overall pattern and approximate location for predicted and observed extremes 
being similar. It was felt that the comparison based on the arbitrary 10 extreme values (only 2.7% 
of all the values estimated) may not be representative for measuring the method performance. If a 
similar comparison of the predicted versus observed extremes is made based on 20 highest and 20 
lowest points (Figure 9), the efficiency of correctly predicting highest and lowest locations 
increases to 50% and 65% respectively. 
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Figure 8. Ten highest and ten lowest rainfall values. Please see the legend for the distinction 
between predicted and observed extreme values. 
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Figure 9. Twenty highest and twenty lowest rainfall values. Please see legend for the distinction 
between predicted and observed extreme values. 
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Taking into account the fact that the rainfall data set used in the SIC97 comparison was 
related to the Chernobyl accident (which was not known by participants before the entries were 
submitted), the interpolators allowing for rapid estimates without the need of preprocessing are to 
be preferred. The automated IDW interpolator appears to satisfy this mandate. 

The anisotropic IDW with cross validation and jackknife is certainly not a “silver bullet” 
for contouring all spatially distributed variables. As with any spatial interpolation method, one 
could concoct situations for which models other than IDW were more applicable. It appears, 
however, that considering its ease of programming, automation, flexibility, objectivity, ability to 
measure the uncertainty of the predictions, and a good performance of the IDW model with this 
and other data sets, the method can be considered a sound, robust, general purpose 2D interpolator. 
The method could also be readily extended to 3-dimentional cases. 

The modified IDW method, as described in this paper, allows for fast estimates even with 
moderate computing power (Pentium133 PC), as well as for assessing the uncertainly of these 
estimates. The algorithm can be programmed as a stand alone application or as a part of a GIS 
Decision Support System. For the purpose of SIC97, all the procedures were programmed in GS-
Scripter (a modified version of BASIC) and used IDW interpolation subroutine included in 
Surfer3D by Golden Software Inc. (Keckler, 1995), via OLE 2.0 automation. 
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Abstract: It is reported how far multiquadratic functions, a specific type of radial basis functions, 
are capable of estimating daily precipitation on a regional scale. This is done with the software 
package SURFER, Version 6 (Golden Software, Inc. 1995). Beforehand, spatial correlation and 
anisotropy within the data was analysed with VARIOWIN 2.2 (Pannatier 1996). A geometric 
anisotropy along the NE-SW axes was identified. Anisotropy was reflected in the interpolation 
model by anisotropy ratios that were associated to the ranges of the directional variogram models. 
The performance of the estimation was assessed by traditional statistical methods. In order to 
highlight possible consequences of errors on decision making, a typecasting of errors was carried 
out by simplified decision rules with relevance to environmental objectives. 
 
Keywords: Multiquadratic Function, Classification of Errors, Decision Making 
 

1. INTRODUCTION 

In environmental sciences the description of the spatial variability of different parameters 
has been necessary for various issues. To mention some, spatially distributed physical and 
ecological process models often require a spatial pattern of some of the input variables. 
Furthermore, decisions related to the assessment of contamination and the need for remedial 
actions are based on the spatial pattern of the relevant contaminants. However, most of these 
parameters can only be measured at particular spots (e.g. at weather stations, in monitoring wells). 
To receive a spatial distribution interpolation of data from irregular networks has to be applied 
frequently. 

Spatial interpolation techniques are many and various, but when choosing a method the 
type of surface being interpolated, particularly its smoothness, must be considered (Robeson 1997). 
For interpolating the spatial variation of soil and hydrological attributes, there seems to be a 
tendency in favour of kriging and distance-weighting methods. Radial Basis Functions such as 
thin-plate splines are supposed to be as flexible and as applicable as kriging estimators. Although 
the algorithm is extremely time-consuming for large data sets, the method was successfully used to 
interpolate digital elevation models (Desmet 1997) and global-scale topography (Robeson 1997). 

However, interpolation always introduces spatially varying errors that propagate through 
successive models and decisions. For example, Phillips and Marks (1996) showed how 
interpolation errors of temperature, humidity and wind speed propagated in a spatially distributed 
physical evapotranspiration model. Myers (1997) emphasised how interpolation errors affected 
decisions concerning remedial actions. In order to assess the reliability of model outputs and 
decisions, the uncertainty of interpolations have to be examined. 
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In what follows it is investigated whether multiquadratic functions, which belong to the 
group of the radial basis functions, are capable of interpolating daily precipitation data throughout 
Switzerland. The study was done within the framework of Spatial Interpolation Comparison 1997 
(SIC97) which means that data from 100 measurement sites were interpolated in order to estimate 
precipitation at another 367 measurement locations. After that the observed precipitation amounts 
at those 367 sites were compared to the estimates so that the performance of the interpolation 
procedures could be assessed. 

The precipitation data are related to the Chernobyl Nuclear Power Plan accident and to the 
radioactive plume that was crossing Europe in May 1986. Since radioactive deposition on the 
ground mainly depends on rainfall, rainfall fields can help to identify possibly contaminated areas 
and associated risks. In order to highlight consequences of interpolation errors on decision making, 
simplified decision rules were used to classify observed and estimated data. A comparison of the 
two classifications showed misclassifications and therefore false decisions. 

2. METHODS 

2.1. Interpolation method 
Interpolation of the 100 initial data points was done by the multiquadratic function, which 

belongs to the group of the radial basis functions (RBF). These are a diverse group of exact 
interpolation methods that differ according to the chosen basis function. They produce a surface 
that passes as close as possible through the data points and still maintains a certain degree of 
smoothness. The multiquadratic function is given by the following equation: 

B (x, y) =   d (x, y)² +  R² i i      (1) 

where: Bi(x,y) is the radial function of the distance di(x,y), 

 di(x,y) is the anisotropically rescaled, relative distance from the data point 
(xi,yi) to the interpolation grid node (x,y), and  

 R² is a smoothing parameter. 

 
During interpolation the basis functions Bi(x,y) for n data points are optimally weighted at every 
grid node by coefficients that are determined by solving a linear equation system.  

In the software package SURFER V. 6.0 (Golden Software, Inc. 1995) anisotropy can be 
considered and a wide range of the smoothing parameter R² can be chosen. In order to examine 
spatial anisotropy the data were analysed in VARIOWIN 2.2 (Pannatier 1996). Experimental 
variograms were calculated omnidirectional and in the four cardinal directions. All the variograms 
were fitted by a spherical model with the parameters listed in Table 1. The ranges of the variogram 
model changed considerably depending on the direction while the sill remained constant. Such 
anisotropy type is referred to as a geometric anisotropy.  

Once anisotropic structures are identified, they should be included in the interpolation 
model. Since the ratios of the ranges of the directional variograms yielded anisotropy-ratios up to 4 
along the NE-SW axis, three approaches - MQ1, MQ2 and MQ4 - were distinguished by 
anisotropy-ratios in 45° direction of 1 (no anisotropy), 2 and 4, respectively (Table 2). 
Additionally, the radii of the search ellipse were adapted. 
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Direction Variogram Model Nugget Sill Range Goodness of fit

omnidirectional Spherical 280 14 000 76 000 0.0410 

 0° (N-S) Spherical 2660 14 000 64 000 0.2120 

 45° (NE-SW) Spherical 280 14 000 210 000 0.0249 

 90° (E-W) Spherical 1680 14 000 109 800 0.1314 

 135° (SE-NW) Spherical 1260 14 000 58 000 0.2367 

Table 1. Parameters of the variogram fitting in VARIOWIN 2.2. 

 

# Anisotropy-
Ratio 

Anisotropy-
Angle 

Search-
Type 

Max 

Data 

Min 

Data 

Search-
Radius 1

Search-
Radius 2 

Search-
Angle 

MQ1 1 - Simple 24 5 210 000 58 000 45° 

MQ2 2 45° Simple 24 5 210 000 58 000 45° 

MQ4 4 45° Simple 24 5 210 000 58 000 45° 

Table 2. Parameters for the anisotropy and the search ellipse used in all interpolations. 

A more crucial parameter is the smoothing parameter R². Unfortunately, there is no 
universally accepted method for computing its optimal magnitude. The program SURFER provides 
a figure for R² which is between the average sample spacing and one-half the average sample 
spacing. Since it may influence the results seriously, interpolations in which R² ranged from 0 to 
5.0E09 were carried out and the resulting contour lines were compared by eye. Scenarios where 
considerable changes occurred were then examined in more detail by cross validation. The cross 
validation results were statistically assessed (see below), and the amount for R² that yielded the 
best results was chosen for each MQ-approach to estimate the data at the 367 additional 
measurement sites. 

2.2. Methods for assessing performance of an interpolation model 
By subtracting an observed value from an estimate at a given location magnitude, sign and 

classification of the estimation error are determined. Observed and estimated can be obtained from 
a cross validation procedure or from additional measurement sites that were not involved in the 
interpolation process. Since no interpolation model is likely to perform best for all locations 
statistical criteria against which the overall performance is measured are needed. For example, the 
mean bias error (MBE), which indicates a bias in estimation when it is nonzero, is calculated with 
equation 2. Furthermore, the summary statistics of the root mean squared error (RMSE), the mean 
absolute error (MAE) and the mean relative error (MRE) given by the equations 3, 4 and 5, 
respectively, incorporate bias and spread of the errors. 

Mean Bias Error:  MBE =  (P  -  P ) i i
i=1

n1
n

$∑  (2) 
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Root Mean Squared Error: RMSE =  (P  -  P )  i i
2

i=1

n1
n

$∑  (3) 

Mean Absolute Error: MAE =  P  -  P  i i
i=1

n1
n

$∑  (4) 

Mean Relative Error: MRE =  
P  -  P

P
 i i

ii=1

n1
n

$
∑  (5) 

 

where:  n number of rain gauge 

  Pi observed rainfall at rain gauge i 

 $Pi  estimated rainfall at rain gauge i 

 
Since good estimations of rainfall fields can help to identify areas possibly contaminated by 
(radioactive) deposition, the performance of estimation was also judged with regard to risk analysis 
and decision making. Thus, it was examined how well the ten highest and the ten lowest rainfall 
data of the whole data set (467 data) were estimated by the methods applied. Both, the precision of 
the spatial location and the accuracy of the precipitation amounts, were considered. 

In addition, an approach of typecasting of errors following Myers (1991, 1997) was carried 
out, which allows us to compare different estimators based on environmental objectives. Decisions, 
whether certain measures will be introduced or not, are often related to thresholds or action levels. 
With this simplified decision rules observed and estimated data are classified. For example, in the 
case of a radioactive fallout people could be warned to harvest garden fruits and vegetables and to 
put cows out to pasture, if precipitation and thus the contamination of an area exceeded a given 
threshold 1. „Immediate measures“, such as prohibition of putting livestock out to pasture along 
with a sophisticated monitoring program in dairies could be introduced if precipitation was even 
above a certain threshold 2. For a virtual case study, it was assumed that areas where rainfall was 
below 2 mm had not been affected by fallout so that no measures had to be introduced. On the 
other hand, areas which had received 40 mm daily rainfall or more should have been chosen for 
„immediate measures“. In such a decision process interpolation errors propagate and might cause 
misclassifications and therefore false decisions. Figure 1 shows a misclassification ellipse and the 
typecasting of errors for decisions that are related to two threshold concentrations indicating 
different action levels. If the estimated concentration exceeds the threshold concentration although 
the actual value falls below that threshold, a error of type I or false positive results. An error of 
type II (false negative) appears when the estimated value is below the threshold concentration, but 
the true concentration is above.  

This approach is highly effective in conjunction with cross validation in order to find 
optimal interpolation parameters for performance-based goals (e.g. Myers 1997). In what follows 
this procedure was also used to compare observed and estimated precipitation at the 367 additional 
measurement sites. 
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Figure 1. Misclassification ellipse for two thresholds (derived from Rendu 1980) and typecasting 
of errors (derived from Myers 1991). 
 

3. RESULTS AND DISCUSSION 

3.1. Assessment and optimisation of interpolation by cross-validation 
Since associated parameters of an interpolation method like the smoothing parameter R² in 

the multiquadratic function may influence the results seriously, these parameters should be 
optimised before the real estimation is done. Therefore, interpolations with R² ranging from 0 up to 
5.0E09 were carried out and the resulting contour lines were compared by eye. Interpolation results 
remained rather constant from R² = 0 to R² = 500 000, but altered from R² > 500 000 onwards in all 
three cases (MQ1, MQ2, and MQ4). Therefore cross validation was performed considering the 
following values for R²: 0, 4.75E06, 1.37E07, and 4.96E07. The last three figures were suggested 
by the software package as reasonable values for the case MQ4, MQ2, and MQ1, respectively. 

The statistics of the estimates and the residuals from the cross-validation processes are 
summarised in Table 3 and Table 4. They revealed that minimum and maximum precipitation 
amounts were over- or underestimated, respectively, and that the standard deviation of the 
estimates was narrower than that of the observed data (Table 3). The higher R², the closer got the 
maximum values and the standard deviations to the observed ones. However, the statistics of the 
residuals (Table 4) showed that the residuals increased when R² was enlarged and so did the 
RMSE, and the MAE. Only the MRE behaved contrarily. The nonzero means indicated a bias in 
the estimations.  

The increasing anisotropy ratios in the approaches MQ2 and MQ4 yielded lower minimum 
and maximum errors, RMSE, and MAE than MQ1. As another result none of the approaches was 
capable of estimating an adequate amount at the sites where precipitation fell below threshold 1 or 
exceeded threshold 2 (Table 3). Consequently, classification errors of type I and II occurred. 
Although the approach MQ4 yielded the lowest amounts for RMSE and MAE in comparison to 
MQ2 and MQ1, it caused more misclassifications particularly at the second threshold. This 
demonstrates that certain measures for performance highlight different aspects so that a single 
measure is not sufficient. To summarise, it seemed reasonable to apply each of the approaches 
(MQ1, MQ2, and MQ4) with a smoothing parameter of R² = 0 to estimate precipitation at the 367 
additional locations. 
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# R² min max mean median std. dev. BB-1 I-1 II-1 AA-2 I-2 II-2

observed - 10 585 180.2 141 116.7 4 - - 4 - - 

MQ1 0 15 454 182.0 142 98.0 0 4 1 0 1 4 

MQ1 4 750 000 16 465 182.3 142 101.2 0 4 1 0 1 4 

MQ1 13 700 000 16 471 182.4 139 103.1 1 3 1 0 1 4 

MQ1 49 600 000 14 480 182.5 137 106.6 1 3 1 0 1 4 

MQ2 0 11 444 181.7 146 100.9 0 4 1 0 1 4 

MQ2 4 750 000 12 457 181.9 139 104.1 0 4 1 0 3 4 

MQ2 13 700 000 13 464 182.0 140 106.0 0 4 1 0 3 4 

MQ2 49 600 000 16 475 181.7 138 109.4 0 4 1 0 3 4 

MQ4 0 14 422 181.1 147 101.5 0 4 1 0 4 4 

MQ4 4 750 000 15 438 181.4 141 105.5 0 4 1 0 4 4 

MQ4 13 700 000 15 457 181.5 143 108.1 0 4 1 0 4 4 

MQ4 49 600 000 12 501 181.1 143 113.8 0 4 2 0 4 4 

Table 3. Statistics of the observed precipitation [1/10th mm] and the estimates from the cross 
validation procedures at 100 measurement sites. 

 

# R² min max MBE RMSE MAE MRE [-] 

MQ1 0 -307 165 2.9 69.4 46.3 0.48 

MQ1 4 750 000 -305 174 2.1 69.8 46.4 0.47 

MQ1 13 700 000 -304 182 2.2 70.3 46.7 0.46 

MQ1 49 600 000 -300 199 2.3 72.1 48.2 0.46 

MQ2 0 -268 149 1.6 63.6 43.8 0.44 

MQ2 4 750 000 -267 155 1.8 64.6 43.8 0.42 

MQ2 13 700 000 -266 158 1.8 65.6 44.2 0.41 

MQ2 49 600 000 -271 163 1.6 68.4 45.7 0.41 

MQ4 0 -241 143 1.0 59.5 42.4 0.41 

MQ4 4 750 000 -242 160 1.3 62.1 43.3 0.40 

MQ4 13 700 000 -243 179 1.3 64.8 44.9 0.40 

MQ4 49 600 000 -281 223 0.9 72.6 50.4 0.44 

Table 4. Statistics of the residuals from the cross validation procedures. 
 



 69

3.2. Comparison between estimated and actual precipitation at additional measurement 
sites 

3.2.1. Assessing performance by statistical criteria 
Contour maps of the rainfall throughout Switzerland on 8th May 1986 were drawn from the 

three interpolation approaches MQ1, MQ2 and MQ4 with the parameters summarised in Table 2, 
with R² = 0, and based on 100 observed precipitation data (Figure 2). In all cases precipitation 
ranged from 0 mm in the east to 50 mm in the south-west. The higher ratio of anisotropy in MQ4 
caused rainfall fields to be more extensive along the NE-SW axis and smaller in SE-NW direction 
than in the cases MQ2 and MQ1.  

These three interpolation approaches were also used to estimate precipitation at another 
367 sites. An estimator that performs well yields a distribution close to the original sample 
distribution. Statistics of the observed and estimated precipitation at these additional measurement 
sites are shown in Table 5. The estimated minimum precipitation generally exceeded the observed 
value of 0 mm. The observed maximum precipitation of 51.7 mm was underestimated by all 
approaches. The mean of the MQ1 and MQ2 estimates stayed below the observed mean while the 
mean produced by MQ4 matched accurately. In all approaches the median of the estimated values 
was higher than the observed one. Standard deviations were narrower in the estimated values than 
in the observed, which is a typically effect owing to smoothing inherent in the interpolation 
procedure. 
 
 

Statistics min max mean median standard deviation 

observed  0 517 185.4 162 111.2 

MQ1, R² = 0 14 484 181.8 163 95.8 

MQ2, R² = 0 17 476 183.4 168 98.9 

MQ4, R² = 0 19 491 185.1 165 101.4 

Table 5. Statistics of the observed and the estimated precipitation [1/10th mm] at the 367 
additional measurement sites. 

 
Scatter plots of observed versus estimated precipitation as shown in Figure 3 on the left 

enable us to investigate conditional bias in the interpolation models. A perfect estimation would 
result in a 45° line where actual and estimated values match exactly, but in practice a cloud of 
points appears instead. Increasing anisotropy ratios in the interpolation models resulted in a slightly 
narrower distribution along the 45° line. However, still few, but high outliers also remained in case 
MQ4. 
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Figure 2. Contours of precipitation [1/10th mm] on 8th May 1986 as well as the sites with the ten 
highest and the ten lowest amounts in the 467 observed data (  and , respectively) and in the 
367 estimates added to the 100 field data used for interpolation (  and , respectively). 
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In Figure 3 on the right residuals are shown as a function of the observed values. This is 
another visual method for investigating conditional bias or correlation of errors. In unconditional 
unbiased estimations, the errors should plot both above and below the horizontal zero line in 
roughly equal magnitude. For the three interpolation approaches applied here low observed 
precipitation tended to be slightly overestimated, whereas the estimates of the highest precipitation 
were far too low. This was a result of the smoothing effect inherent in the interpolation models. 
However, the overestimation of low precipitation depths slightly increased, the higher the 
anisotropy ratio in the interpolation model was. On the contrary, the magnitude of residuals at high 
observed precipitation, slightly decreased and generally the spread of errors also declined. On the 
whole, estimation errors tended to correlate with the observed precipitation in all approaches.  
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Figure 3. Scatter plots with 367 precipitation data [1/10th mm].Left: Estimated versus observed 
precipitation. Right: Observed precipitation versus residuals (estimation - observation). 
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Quite a number of residuals amounted up to +/- 10 mm. Considering that the mean 
observed precipitation was about 18 mm, such estimation errors are rather high. While only one 
positive error of more than 20 mm occurred, several negative residuals of the same magnitude 
appeared especially where the observed precipitation exceeded 35 mm.  

In Figure 4 it is shown how the residuals were distributed in space. In areas where the 
interpolation models were supported by evenly scattered measurement sites and in areas where 
rainfall altered continuously in space, the estimation errors were low. This could be found in the 
northern part of the investigation region. However, all of the three approaches failed to predict 
precipitation that changed rapidly in space. For example: The location where the highest positive 
error of about 30 mm appeared was surrounded by sites where much higher precipitation was 
observed so that this local minimum was not estimated well. 

High over- and underestimates showed a clustered pattern. Those clusters mainly occurred 
in areas where the interpolation was not or was only sparsely supported by data points. Areas that 
had received high precipitation were not identified when none of the data from that cluster was 
included in the interpolation process. On the other hand, data with very high precipitation amounts 
partly caused considerable overestimation in their surroundings. 

The overall performance can be assessed by MBE, RMSE, MAE and MRE (Table 6). The 
MBE were negatively biased which was mainly due to the large negative estimation errors. MBE 
decreased in MQ4 as a result of a few higher overestimates at low precipitation values in 
comparison to MQ1 and MQ2. RMSE as well as MAE decreased in relation to the anisotropy ratio 
in MQ1, MQ2 and MQ4. In general, the amounts of RMSE (5.3 to 5.6 mm) were higher than the 
values of MAE (3.7 to 3.9 mm) because the RMSE is more sensitive to high residuals. MQ2, 
followed by MQ4 and MQ1, performed best, but a MRE of 37 % still remained. 

Owing to a better consideration of the anisotropy detected by spatial data analysis, MQ2 
and MQ4 yielded better results than MQ1. It has to be concluded that pre-modelling is an approach 
to improving interpolation models. However, the overall performance remained rather poor. 
 

# MBE [1/10th mm] RMSE [1/10th mm] MAE [1/10th mm] MRE [-] * 

MQ1, R² = 0 -3.6 55.7 38.8 0.38 

MQ2, R² = 0 -1.9 53.1 36.7 0.37 

MQ4, R² = 0 -0.3 53.3 37.3 0.45 

(*: At five measurement sites no precipitation was observed. Since this caused a division by zero, these sites 
were neglected in MRE.) 

Table 6. Summary statistics of the observed and estimated precipitation data at the 367 
additional measurement sites.  
 
3.2.2. Performance of estimating the ten highest and the ten lowest precipitation amounts 

In Figure 2 squares and circles indicate the locations of the ten highest and the ten lowest 
precipitation amounts, respectively. The sites related to the estimated values are drawn by filled 
symbols and include the 100 data that were used for the interpolation. These 100 field data 
included three out of the ten highest amounts in the whole data set and one out of the ten lowest 
data.  

The highest estimates were mainly located in the neighbourhood of the precipitation site 
where 58.5 mm was observed, while the lowest estimates almost entirely appeared in the eastern 
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part of Switzerland. Table 7 summarises the number of matched locations, which are locations 
where both, actual data and estimates, belonged to the ten highest and the ten lowest amounts in 
the 467 data. Additionally the ranges of the precipitation amounts are given. The ranges of the 
highest and lowest estimates were of the same order of magnitude in the observations and in the 
three interpolation models. There was a shift towards higher precipitation from MQ1 to MQ4 
according to the anisotropy ratios. However, none of the interpolation models succeeded in 
identifying the clusters of high precipitation in the middle of the investigation area since no data 
from there had supported the interpolation. 

  10 lowest precipitation data  10 highest precipitation data 

 matched locations precipitation
[1/10th mm] 

matched locations precipitation 
[1/10th mm] 

observed 10 0 .. 10 10 434 .. 585 

MQ1 4 10 .. 24 4 398 .. 585 

MQ2 4 10 .. 20 4 440 .. 585 

MQ4 2 10 .. 31 4 446 .. 585 

Table 7. The number of matched locations (both, actual data and estimates, belong to the ten 
highest and the ten lowest data in the 467 data) and ranges of the ten highest and the ten lowest 
precipitation amounts. 
 

3.2.3. Performance of estimating precipitation amounts P ≥ 40 mm and P ≤ 2 mm 

As outlined above data that exceeded P = 40 mm were supposed to indicate need for 
“immediate measures”, whereas areas where precipitation fell below P = 2 mm would receive no 
measure at all (see Figure 1). With these simplified decision rules observed and estimated 
precipitation data were classified into three groups. Owing to interpolation errors different numbers 
and types of true and false decisions occurred (Table 8). Their spatial location is shown in 
Figure 5. The total number of sites where precipitation fell below threshold 1 and exceeded 
threshold 2 was lower in the estimated sets than in the observed one due to smoothing through the 
interpolation processes. While in case MQ1 both classes (P ≤ 2 mm, P ≥ 40 mm) were equally 
filled there was a shift towards fewer numbers below threshold 1 and more above threshold 2 in 
MQ4. 
 

 Threshold 1: P ≤ 2mm Threshold 2: P ≥ 40 mm 

 Type I Type II BB Type I Type II AA 

Observed - - 18 - - 22 

MQ1, R² = 0 11 1 7 2 15 7 

MQ2, R² = 0 10 2 8 4 12 10 

MQ4, R² = 0 14 1 4 7 11 11 

Table 8. The number and types of true and false decisions at the two thresholds. 
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Figure 4. Proportional residuals (estimation - observation) of precipitation on 8th May 1986: 
�: positive, �: negative errors [1/10th mm]. 
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Figure 5. Contours of precipitation [1/10th mm] on 8th May 1986 and classification of precipitation 
with threshold values. Symbols: Estimated P ≥ 40 mm: ; Observed P ≥ 40 mm: ; Estimated 
P ≤ 2 mm: ; Observed P ≤ 2 mm: . 
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Moreover, an increasing anisotropy ratio caused more false positives (Error Type I) at both 
thresholds and less false negatives (Error Type II) at the second threshold. At threshold 1 right 
decisions (BB) decreased, but increased at threshold 2 (AA). This approach thus shows the bias 
and smoothing within the estimators in a simple manner. Nevertheless, this technique functions 
well to evaluate interpolation results in the framework of decision making. The interpolation model 
that succeeded in deciding most accurately would be chosen in practice. 

4. CONCLUSIONS 
Altogether, the approach MQ2 provided the best estimates of precipitation at the 367 

additional measurement sites. Owing to the better consideration of anisotropy, both MQ2 and MQ4 
yielded better results than MQ1. Therefore, it has to be concluded that spatial data analysis and 
consideration of anisotropy can improve interpolation results with the multiquadratic function. 
However, the overall performance is little acceptable. The multiquadratic function was rarely 
capable of estimating precipitation that changed rapidly in space as it occurs in daily rainfall fields 
in mountainous regions. Particularly the performance of estimating high precipitation amounts was 
rather poor. The smoothing effect inherent in the interpolation procedure caused a biased 
estimation in which low precipitation data were overestimated and high precipitation data were 
clearly underestimated. In case of a nuclear accident rapid and reliable estimations are needed 
especially to recognise areas that had received high precipitation. Since this target is badly met by 
the approaches shown in this paper it has to be concluded that they should not be applied to 
estimate heterogeneous rainfall fields. 

Since residuals from the cross validation processes also revealed the weak points of 
interpolations with the multiquadratic function, this technique can be used to optimise the 
interpolation model and to provide some measure for the uncertainty of the interpolation. For 
example, the mean relative error could be imposed on the estimates. However, it should be noted 
that the RMSE, the MAE and the MRE calculated from the residuals from the cross validation 
processes were higher than the corresponding amounts from the residuals at the 367 additional 
measurement sites. That means that the uncertainty of the interpolation is overestimated when it is 
solely derived from cross validation results. Nevertheless, this procedure can be used for the 
optimisation of interpolation with regard to the choice of the basis function, the parameter R², 
anisotropy and search parameters. Regions where high residuals and misclassifications still remain 
should be suggested for additional field sampling. 
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Abstract: Two dimensional thin plate smoothing splines were used to interpolate 100 daily rainfall
values, with the degree of data smoothing determined by minimising the generalised cross
validation. Analyses were performed on the square roots of the rainfall values, permitting robust
calibration of spatially distributed standard errors which are correlated with rainfall amount. Initial
model calibration was made difficult by apparent short range spatial correlation in the data. This
was overcome by removing one point from each of the ten closest pairs of data points, indicating
that this correlation had a range of less than 10 km. A companion paper shows that the short range
correlation can be associated with topographic effects. The error analyses were confirmed by
comparing predictive accuracies on 367 withheld data points. The validity of using the square root
transformation was also confirmed.

Keywords: Thin plate smoothing splines, generalised cross validation, data smoothing, standard
errors, short range correlation, correlated errors, rainfall data, square root transformation

1. INTRODUCTION AND METHODOLOGY
Rainfall, particularly at the daily time scale, typically displays complex spatial patterns.

These are often related to topography and prevailing wind direction, but calibration of such factors
can be difficult. This paper examines two dimensional analyses of daily rainfall data, using thin
plate smoothing splines, as implemented in the ANUSPLIN package (Hutchinson 1997). A
companion paper (Hutchinson 1998) uses partial thin plate smoothing splines to examine
topographic dependencies of the same data.

Thin plate smoothing splines are commonly applied to smooth multivariate interpolation of
irregularly scattered noisy data. Early applications to meteorological data were presented by
Wahba and Wendelberger (1980) and Hutchinson and Bischof (1983), following development of
the basic methodology by Wahba (1979) and Bates and Wahba (1982). A detailed account of thin
plate smoothing splines, and various generalisations, may be found in Wahba (1990). Further
applications to climate interpolation have been described by Hutchinson (1991) and further
methodological developments, suitable for geographic applications, have been presented by Gu
and Wahba (1993) and Mitasova and Mitas (1993).

Comparisons with geostatistical techniques, with which splines share close formal
connections, have been presented by Hutchinson (1993) and Hutchinson and Gessler (1994). A
feature of thin plate smoothing spline analyses is their operational simplicity, since they do not
require separate calibration of spatial covariance structure. Ordinary kriging normally requires
prior calibration of a variogram with three parameters - range, nugget and sill (Cressie 1991,
Wackernagel 1995). Once the range is defined, predicted values depend only on the ratio of the
nugget to the height to sill, but the actual values of both nugget and sill are required to estimate
spatially distributed standard errors of the fitted model. The range parameter can be difficult to
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calibrate, even from simulated data (Dietrich and Osborne 1991).

Thin plate smoothing splines, which are unaffected by uniform scaling of the independent
variables by an arbitrary non-zero constant, enjoy the significant practical advantage of having no
range parameter (Hutchinson 1993). This makes the associated covariance structure more robustly
determined when data are limited. Splines are calibrated by optimising a single parameter, the
smoothing parameter, to determine the degree of data smoothing. This is usually done by
minimising the generalised cross validation (GCV), first introduced by Craven and Wahba (1979).

The GCV is a direct measure of the predictive error of the fitted surface, calculated by
removing each data point in turn, and forming a weighted sum of the square of the discrepancy of
each omitted data point from a surface fitted to all other data points. The GCV may be calculated
implicitly, and hence efficiently, using the “leaving out one” lemma (Craven and Wahba 1979,
lemma 3.1). Minimising the GCV has been found to yield good results with simulated and actual
data, although it can yield undersmoothing of data with correlated errors (Diggle and Hutchinson
1989). Applications of GCV to large scale data smoothing problems have been described by Golub
and von Matt (1997).

Spatially distributed standard errors for thin plate smoothing splines can be estimated by
applying standard geostatistical techniques to the spline model (Wahba 1983, Silverman 1985,
Hutchinson 1993). These estimates are scaled by the nugget variance, estimated in the case of
splines by analogy with least squares regression analysis (Wahba 1990).

A useful diagnostic associated with thin plate smoothing splines is the signal, or effective
degrees of freedom of the model, as estimated by the trace of the influence matrix associated with
the fitted spline. Hutchinson and Gessler (1994) present evidence to suggest that this should be no
greater than about half of the number of data points. Signals larger than this are indicative of either
insufficient data or short range correlation in the data values. Thin plate spline analyses can be
extended to incorporate correlation in the data (Diggle and Hutchinson 1989, Hutchinson 1995),
but a simple alternative approach is employed in this paper by omitting one point from each of the
closest pairs of data points. The spacing of these pairs can give insight into the range of the short
range correlation structure.

2. FEATURES OF THE RAINFALL DATA
Three features of the rainfall data set deserve attention. Firstly the small size of the data set

places limits on the complexity of proposed spatial analyses, such as the incorporation of
topographic effects. This is examined further in the companion paper.

Secondly, from the point of view of two dimensional spline analysis, errors in the positions
of the data points should be considered, particularly if short range correlation is evident in the data.
Positions have been derived from positions recorded in geographic coordinates, usually recorded to
the nearest minute of latitude and longitude. This implies that the standard error in data point
position is around 1 km. The two closest data pairs have separations of just 1.1 km.

Finally, the nature of variability of rainfall should be considered. Daily rainfall
distributions are typically skewed, with respect to both space and time. The transport mechanisms
associated with rainfall imply that distributions in space and time are closely intertwined. It is well
known that skewness can be greatly reduced by taking rainfall to a small power. Stidd (1973)
suggested the cube root as a universal means of reducing observed rainfall totals to the upper tail of
a normal distribution. Hutchinson et al. (1993) have shown that this power should be closer to the
square root, at least for daily rainfall data across the USA. The square root transformation was
therefore applied to all rainfall data values before performing the spatial analyses. Figure 1 shows
that the square root transformation significantly reduced the skew in the raw data.
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Figure 1. Histograms using all 467 data points of (a) the square root rainfall data, (b) the raw
rainfall data.

3. ERROR ANALYSIS OF THE SQUARE ROOT TRANSFORMATION
An immediate consequence of applying the square root transformation to the rainfall data

is that estimated errors in the squared interpolated values are positively correlated with the rainfall
values. Squaring the interpolated square root values also introduces a small positive bias. This bias
is ignored.

The square root transformation permits a simple analysis of standard error. Suppose that
the true value of rainfall at a point is R = Z

 2
 and that Z is estimated by X with error ε so that

X = Z  +  ε. (1)

Suppose also that ε is normally distributed with zero mean and variance σ
 2

, so that the standard
error in X is σ.

The variance of X
 2
 is then given by

var(X
 2
) = var(Z

 2
 + 2Zε + ε

 2
) = 4Z

 2
σ

 2
 + 2σ 

4
. (2)

Replacing Z by the estimate X, an estimate of the standard error in X
 2

, as an approximately
unbiased estimate of R, is then given by

SE(X
 2
)  =  (4X

 2
σ

 2
 + 2σ 

4
)

 1/2
   =   σ (4X

 2
 +   2σ

 2
)

 1/2
. (3)
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Equation (3) was used to calculate spatially distributed standard error estimates of the estimated
untransformed rainfall values. This equation shows explicitly how these estimates are positively
correlated with rainfall amount. When X is negative, then X is replaced by zero.

The second term under the square root in equation (3) is negligible except when X is close
to zero or σ is relatively large. This gives a simple approximate standard error estimate of 2Xσ,
implying that smaller rainfall values should be estimated with better absolute accuracy than larger
rainfall values. The corresponding relative standard error estimate is then given by

RE(X
 2
)  =  2σ/X    (4)

implying that larger rainfall values should be estimated with better relative accuracy than smaller
rainfall values. This relative error estimate is exactly twice the relative error in the square root
rainfall estimate.

4. ANALYSIS OF SHORT RANGE CORRELATION
Initial application of the procedure SPLINA to fit a second order thin plate smoothing

spline to the data set yielded exact interpolation. This occurred with both transformed and
untransformed data. It was reasoned that this was due to short range correlation in the data. This
has been overcome by Hutchinson and Gessler (1994), in their analysis of soil electrical
conductivity data, by successively removing points from the closest data point pairs, until the
closest spacings exceeded the range of the apparent short range correlation. Once sufficiently many
close pairs were removed, the procedure applied reasonable data smoothing and the signal (the
trace of the influence matrix) reduced to less than half the number of data points. The estimated
standard deviation of the model error also approached estimates of the nugget standard deviation
obtained by standard variogram analysis.

For the present study, the SELNOT procedure was used to successively remove points
from the closest pairs in the data set. This procedure is normally used in the ANUSPLIN package
to select knots for an approximate thin plate spline procedure, used for analysing larger data sets.
Applying the SPLINA procedure to the square root rainfall data, the signal, the estimated standard
deviation of the model error and the GCV were monitored as data points were removed and
minimum data point separation increased. These statistics are listed in Table 1 for 0, 5, 10 and 15
removed data points. Table 1 also lists the root mean square residual of the fitted surfaces from the
withheld 367 data points. The estimated standard deviation of model error and the root mean
square residual from the 367 withheld data points are also plotted in Figure 2 as a function of
number of points omitted.

Exact interpolation was avoided after four data points were removed and the minimum
data separation exceeded 4.0 km. Estimates of the signal and the standard deviation of model error
(nugget standard deviation) stabilised after a total of 10 points were removed and the minimum
data point separation was 7.3 km. The signal for this surface was 61.2, acceptably close to the
usually recommended upper limit of 45 (half the number of data points). This surface was chosen
for detailed analysis and examination of residuals from the withheld 367 data points. The IDs of
the 10 points withheld from the spline analysis were, in order of removal, 341, 37, 458, 369, 192,
188, 292, 372, 442, 281. It was concluded that the range of the short range correlation was
certainly less than 10 km, perhaps consistent with an exponential model with a range of around 5
km.
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Number of
points

removed

Minimum
data point
separation

(km)

Signal

Square
root of the

GCV
(mm1/2)

Estimate of
standard

deviation of
model error

(mm1/2)

RMS
residual

from 367
data points

(mm1/2)
0 1.1 100 0.425 0.0 0.712
5 4.5 75.2 0.745 0.340 0.670

10 7.3 61.2 0.799 0.452 0.648
15 8.3 60.4 0.835 0.449 0.657

Table 1. Statistics of second order thin plate smoothing analyses of the square root rainfall data as
data points are removed to increase minimum data point separation.
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Figure 2. Estimated standard deviation of model error (a) (nugget standard deviation) and (b)
RMS validation error from 367 withheld data points, as a function of number of data points
removed.
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Examination of Table 1 and Figure 2 shows that the best RMS validation residuals were
obtained by the surfaces with the largest amount of data smoothing. They also show that the GCV
was not a reliable estimate of model error in the presence of short range correlation. On the other
hand, both the signal and the estimated standard deviation of model error appear to be reliable
indicators of the best number of close data points to be removed. The smallest RMS validation
residual, obtained after 11 points were removed, with a minimum data spacing of 7.4 km, was
associated with the first minimum of the signal and a local maximum of the estimated standard
deviation of model error.

In fact, the best indicator of the number of close points to be removed, without the benefit
of withheld data, appears to be the relative signal, defined as the ratio of the signal to the number
of data points analysed. Each local minimum of the relative signal also occurred with a local
minimum of the root mean square validation residual, and the absolute minimum of the relative
signal occurred when 11 close data points were removed.

A similar thin plate spline analysis was applied directly to the untransformed data. The
appropriateness of the square root transformation was indicated by slightly less systematic
behaviour of the statistics as minimum data separation increased, although a clear absolute
minimum and maximum respectively of the relative signal and the estimated standard deviation of
model error were obtained after 13 data points were removed. More significantly, the RMS
validation residuals were greater than the corresponding RMS validation residuals of the squares of
the interpolated square root rainfall values by around 10 %.

A third order, two dimensional, thin plate smoothing spline, in which the roughness
penalty defining the interpolation is specified in terms of third order partial derivatives was
similarly investigated. It is discussed in the companion paper. This model performed less well than
the second order spline analysis, in terms of GCV and RMS validation residuals. This confirmed
the author's experience that surface climate data rarely exhibit the high degree of spatial continuity
implied by third and higher order thin plate splines.

5. STATISTICS
Most statistics and maps are presented in terms of the square root analysis and for the

ensuing untransformed values, obtained by simply squaring all interpolated square root rainfall
values. All rainfall values are given in units of mm and all square root rainfall values are given in
units of mm1/2. General statistics are presented in Table 2 and histograms of all 467 estimated
values are shown in Figure 3. These indicate close agreement with the means and medians, slight
attenuation of the extreme rainfall values and reduction in standard deviation, particularly for the
untransformed values. These are consistent with the process of data smoothing. Figure 3 also
shows slight smoothing of the histograms of the data shown in Figure 1.

Data Minimum Maximum Mean Median Std. Dev.

True square root values
(mm1/2) 0 7.19 4.07 4.02 1.39
Estimated square root
values  (mm1/2) 0.53 6.73 4.02 3.99 1.24
True untransformed
values  (mm) 0 51.7 18.5 16.2 11.1
Estimated untrans-
formed values  (mm) 0.3 45.4 17.7 15.9 9.8

Table 2. General statistics for the withheld 367 data points and for the 367 estimated values.
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Figure 3. Histograms of (a) interpolated square root values and (b) squared interpolated square
root values, for all 467 data points.

Comparative statistics, including the number of agreements with the actual 10 smallest and
largest values, are presented in Table 3. Scatter plots of the residuals from the 367 data values are
shown in Figure 4 and scatter plots of the 367 estimated values are shown in Figure 5.

The bias in the square root estimates is negligible, being just 1 percent of the mean. The
bias in the untransformed estimates is just 5 percent of the mean. There is slight correlation of -
0.45 between square root data residuals and actual values in Figure 4(a). This is consistent with
two dimensional smoothing of the largest and smallest data values. Figure 5(a) shows uniform
scatter of the estimated square root values about the square root data values, with correlation of
0.89.

The untransformed estimated values naturally introduce additional bias, due to the process
of squaring the interpolated square root values. Accordingly, there is a greater correlation of -0.47
in the untransformed residual values in Figure 4(b) and Figure 5(b) shows non-uniform scatter
about the true values, with correlation of 0.87.
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Data RMS Error Bias Mean
Absolute

Error

Mean
Relative

Error

Number
in 10

smallest

Number
in 10

largest

Square root
(mm1/2)

0.648 -0.05 0.49 0.13

Untransformed
(mm)

5.60 -0.8 3.9 0.28

8 3

Table 3. Comparative statistics for the 367 square root and untransformed rainfall data. The
number of agreements with the 10 smallest and 10 largest points of all 467 data points.
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Figure 4a. Scatter plot of 367 data residuals versus data values for square root values (correlation
= -0.45).
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Figure 4b. Scatter plot of 367 data residuals versus data values for untransformed values
(correlation = -0.47).
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Figure 5. Scatter plot of 367 estimate values versus data values for (a) square root values
(correlation = 0.89) and (b) untransformed values (correlation = 0.87).

6. MAPS FOR THE SQUARE ROOT RAINFALL VALUES
An isoline plot of the grid of standard errors of the interpolated square root values is shown

in Figure 6. This grid is calculated by the ERRGRD program from the surface coefficients and
error covariance matrix calculated by SPLINA, according to the method for estimating spatially
distributed errors described in Hutchinson (1993). As in figure 2 of Hutchinson and Gessler (1994),
this map shows a smooth trend in estimated standard errors which are closely related to data
network density.

Figure 7 shows an isoline plot of the grid of interpolated square root values. This grid is
calculated by the LAPGRD program from the fitted surface coefficients. The even spacing of these
isolines further reflects the appropriateness of the square root transformation.
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Figure 6. Estimated standard errors (mm1/2) for the interpolated square root values overlaid with
the positions of the 90 data points used to fit the surface.

Figure 7. Isolines of the interpolated square root values (mm1/2).
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7. MAPS FOR THE UNTRANSFORMED RAINFALL VALUES
A proportional symbol map of the untransformed data residuals is shown in Figure 8,

overlaid with an isoline plot of the grid of standard errors of the untransformed interpolated rainfall
values. This grid is calculated from the grids shown in Figures 6,7 using equation (3) described
above. The grid values, and corresponding isolines, are limited to those grid points for which the
estimated standard error in Figure 6 does not exceed 0.9 mm1/2. Interpolated values larger than the
measured values are indicated by a cross and interpolated values less than the values are indicated
by a circle. The size of the residuals are in good agreement with the plotted standard error isolines,
which reflect both data network density and the magnitude of the interpolated rainfall.

Figure 9 shows an isoline plot of the grid of untransformed interpolated values, overlaid
with the symbols denoting the 10 smallest and 10 largest rainfall data values. This grid was
calculated by squaring the interpolated square root values shown in Figure 7, and limiting grid
values to the same grid positions as for Figure 8.

Figure 8. Proportional symbol map of untransformed data residuals, overlaid with isolines of
estimated standard errors (mm).
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Figure 9. Isolines of the untransformed interpolated values (mm), overlaid with the 10 smallest
and 10 largest estimated rainfall data values.

8. INTERPOLATION ACCURACY
The accuracy of the interpolated values has already been partly assessed by plotting

contours of the standard error estimates in Figure 8 and comparing them graphically with the data
residuals. The largest residuals are clearly associated with the largest estimated standard errors.
Normalised standard error estimates, obtained by dividing each data residual by the corresponding
estimated standard error, showed reasonable agreement with a standard normal distribution. In
view of the topographic analyses in the companion paper (Hutchinson 1998), the largest residuals
are also associated with topographic aspect effects both north west and south east of The Alps.

The accuracy measures in Table 3 were calculated directly from the differences between
the interpolated values and the actual values. The estimated statistics listed in Table 4 were
calculated in the same way from the corresponding estimated standard errors. They show
reasonable agreement with the actual statistics. In particular they verify, in average terms, the
relative standard error formula given by equation (4).

Data RMS Error Mean Abs. Err Mean Rel. Err

Square root (mm1/2) 0.58 0.57 0.18

Untransformed (mm) 4.8 4.6 0.37

Table 4. Estimates of comparative statistics for the 367 withheld data values.
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9. PERFORMANCE
The model performed well in estimating central summary statistics of the withheld data,

with biases of just 1 % and 5 % of the square root mean and the untransformed mean respectively.
The medians were even closer, agreeing to within less than 1 and 2 percent respectively. The root
mean square residuals were 16 % and 31 % of their respective data means.

Extremes of the withheld data were slightly attenuated, and standard deviations were also
slightly reduced, to be expected when data are smoothed. There was strong agreement between the
actual and estimated 10 smallest values. The agreement was less strong for the 10 largest values.
This is entirely consistent with the standard error analysis given by equations (3,4), which indicate
that smaller values are estimated more accurately than larger values, in absolute terms, even though
they are estimated less well in relative terms. Nevertheless, the estimated 10 largest values were
located in the same two regions occupied by the actual 10 largest values.

10. EMERGENCY APPLICATION OF THE METHODOLOGY
The methodology is well suited to rapid application in emergency situations. As previously

noted, thin plate smoothing splines are relatively simple to use, in part because they do not require
separate calibration of spatial covariance structure. The programs in the ANUSPLIN package are
computationally efficient, permitting application on modest workstations to data sets containing up
to several thousand data points.

The initial square root transformation is simple and likely to be universally appropriate,
given the tendency for the square roots of daily rainfall values to be approximately normally
distributed. The estimation of the standard errors of the final untransformed interpolated rainfall
values is also straightforward.

If closely spaced data points have to be omitted to remove the effects of short range
correlation in the data, these may be readily determined using the SELNOT procedure. The
criterion for assessing the range of the short range correlation is also simple and appears to be
robust. This may not be necessary for larger data sets, since applying the method to the full data set
yielded appropriate data smoothing without omitting closely spaced data points.

11. CONCLUSION
The thin plate spline model, applied to the square roots of the observed rainfalls, has

provided point estimates which show good agreement with the withheld data, as measured by both
summary comparative statistics and order statistics. The estimated values are consistent with the
standard error analysis. The estimated comparative statistics also agree with the actual comparative
statistics.

A simple criterion has been indicated for assessing the number of close pairs to be
removed to remove the effects of short range correlation in the data. The criterion is to
successively remove a point from the closest data pair until a minimum of the relative trace, or
equivalently a minimum of the signal to noise ratio, is obtained. This criterion is verified in three
dimensional analyses in the companion paper.

The results confirm the validity, and internal consistency, of the square root error model.
Moreover, interpolating the square root values yielded more accurate estimates of the withheld 367
data values than directly interpolating the untransformed data values.

Higher order, two dimensional thin plate splines were found to perform less well,
confirming experience with surface climate data. The effects of short range correlation in the data
were readily identified and removed. The analysis is general and readily applied to emergency
situations.
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Abstract: Thin plate smoothing splines incorporating varying degrees of topographic dependence
were used to interpolate 100 daily rainfall values, with the degree of data smoothing determined by
minimising the generalised cross validation. Analyses were performed on the square roots of the
rainfall values. Model calibration was made difficult by short range correlation and the small size
of the data set. Short range correlation was partially overcome by removing one point from each of
the five closest pairs of data points. An additional five representative points were removed to make
up a set of 10 withheld points to assess model error. Three dimensional spline functions of position
and elevation, from digital elevation models of varying resolution, were used to assess the
optimum scaling of elevation and an optimum DEM resolution of 10 km. A linear sub-model,
depending on the two horizontal components of the unit normal to the scaled DEM, was used to
form a five dimensional partial spline model which identified a south western aspect effect. This
model also had slightly smaller estimated predictive error. The model was validated by reference to
the prevailing upper atmosphere wind field and by comparing predictive accuracies on 367
withheld data points. Model selection was further validated by fitting the various spline models to
the 367 data points and using the 100 data points to assess model error. This verified that there
were small, but significant, elevation and topographic aspect effects in the data, when calculated
from a 10 km resolution DEM, providing a physical explanation for the short range correlation
identified by the two dimensional analysis in the companion paper.

Keywords: Partial thin plate smoothing splines, digital elevation model, topographic dependence,
generalised cross validation, data smoothing, short range correlation, rainfall data, square root
transformation

1. INTRODUCTION AND METHODOLOGY
Rainfall, particularly at the daily time scale, typically displays complex spatial patterns.

These are often related to topography and prevailing wind direction, but calibration of such factors
can be difficult for several reasons. Precipitation usually displays a spatially varying dependence
on elevation. Moreover, high altitude stations are small in number and measurements can be
contaminated by measurement error associated with high wind speed and with snow (Barry 1981).
Calibration is thus made even more difficult if the data set is small, as in the case investigated here.

This paper examines higher dimensional analyses of daily rainfall data, using thin plate
smoothing splines, and partial thin plate smoothing splines, to incorporate varying degrees of
topographic dependence. Partial thin plate splines, as described by Bates et al. (1987) and Wahba
(1990), were obtained using the ANUSPLIN package (Hutchinson 1997a). Two, three, four and
five dimensional spline models, as discussed by Hutchinson (1995a), are examined. The
companion paper (Hutchinson 1998) uses thin plate smoothing splines to examine in detail two
dimensional dependence of the same data. It identifies short range correlation structure in the data
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with a range less than 10 km. In keeping with the error analysis of the companion paper, the
analyses described below were performed on the square roots of the observed rainfall data.

The companion paper also gives a brief introduction to thin plate smoothing splines and
applications to climate analysis. It also describes the relationship of thin plate smoothing splines to
kriging methods, as examined by Hutchinson (1993) and Hutchinson and Gessler (1994). Key
features of thin plate smoothing spline analyses are their robustness and operational simplicity. An
important diagnostic associated with thin plate smoothing spline analyses is the signal of the fitted
spline, as estimated by the trace of the influence matrix. This gives the effective number of
parameters of the fitted spline model. It should normally be less than about half of the number of
data points. The companion paper shows that the relative signal can be used to assess short range
correlation structure in the data.

2. FEATURES OF THE RAINFALL DATA
Three features of the rainfall data set deserve attention, in addition to the features discussed

in the companion paper. Firstly, as discussed above, the small size of the data set places limits on
the complexity of analyses of topographic dependence.

Secondly, from the point of view of three dimensional spline analysis, errors in both
position and elevation of the data points should be considered. A digital elevation model (DEM)
with a spatial resolution of 1 km was provided. This DEM had been interpolated from a 30 second
DEM in geographic coordinates calculated by the US Geological Survey (USGS). Lack of
precision in horizontal coordinates, which have estimated standard error of around 1 km, translates
into lack of precision in estimated station elevations, especially in areas of high relief such as the
Swiss Alps. This was assessed by estimating station elevations from the original USGS DEM,
using the geographic coordinates of the stations. Elevations were interpolated from the USGS
DEM using biquadratic spline interpolation. The method of interpolation of elevations in the 1 km
DEM is unknown. Elevations of the stations from the two DEMs are compared in Figure 1(a),
showing positive and negative differences as large as 300 metres, and a root mean square
difference of 100 metres.
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Figure 1. (a) Station elevation from the USGS 30 second DEM versus station elevation from the 1
km DEM ; (b) Square root rainfall (mm1/2) versus station elevation from the 1 km DEM.

Thirdly, the data do not indicate simple dependence on elevation. This is shown clearly in Figure
1(b) where square root rainfall is plotted versus station elevation, as derived from the 1 km DEM.



95

3. CALCULATION OF TOPOGRAPHIC VARIABLES
In view of the lack of horizontal and vertical precision of the data, and the likely coarse

scale of elevation dependence of the precipitation data, the 1 km DEM was subjected to
smoothing, to produce DEMs of successively coarser resolutions. These were calculated by
supplying the 1 km DEM points as data for the ANUDEM elevation gridding program (Hutchinson
1996, 1997b). Data smoothing by ANUDEM, which improved representation of terrain slope and
aspect, was adjusted for the number of data points per output DEM grid cell. The resultant DEMs
have elevations which are slightly smoothed local averages of the 1 km DEM elevations across
each coarse resolution DEM grid cell. Summary statistics of the original and smoothed DEMs are
listed in Table 1. The RMS slope rapidly declines as a function of resolution. The coarse resolution
DEMs remove the ambiguity in station elevations shown in Figure 1(a). Station elevations for the
ensuing analyses were obtained from each DEM using biquadratic spline interpolation.

Resolution
(km)

RMS Residual from
1 km DEM (m)

RMS Slope
(%)

Mean Elevation
(m)

Max Elevation
(m)

1 0 21.8 1070 4469

2.5 171 10.4 1074 4023

5 242 5.8 1074 3473

8 292 3.7 1075 3127

10 315 3.1 1069 3151

20 381 1.8 1077 2925

Table 1. Summary statistics of the original 1 km DEM and the smoothed coarse resolution DEMs.

Topographic slope and aspect effects on rainfall were modelled by using the eastern and northern
components of the unit normal vector to the smoothed DEMs as predictor variables. These
components are given respectively by

p = - zx /(1 + zx
2  +  zy

2) 1/2 (1)
q = - zy /(1 + zx

2   +  zy
2) 1/2 (2)

where zx and zy are the partial derivatives of the elevation surface z(x,y) with respect to x and y.
Equivalently

p = cos(α) sin(θ) (3)
q = sin(α) sin(θ) (4)

where, for each point on the DEM,  α is the aspect angle, given by the direction of steepest slope,
and θ is the angle of steepest slope itself.

The variables p,q are continuous functions of position, with largest magnitude on steepest
slopes, and reducing to zero on flat slopes in valley floors and on peaks. Using both p,q in the
analysis permits the incorporation of the effects of both slope and aspect in a process oriented
fashion. It also allows the direction of these effects to be determined without reference to the
prevailing wind field.

4. SELECTION OF WITHHELD DATA
As in the two dimensional analysis in the companion paper, initial three dimensional thin

plate smoothing spline analyses yielded exact interpolation, indicating short range correlation in
the data. This occurred for station elevations obtained from each DEM. The SELNOT procedure of
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the ANUSPLIN package was used to remove one point from each of the five closest data pairs in
three dimensional space, with elevations obtained from the 10 km DEM. Horizontal and elevation
coordinates were each scaled to have unit variance. The IDs of the removed points were almost the
same as the first five removed in the two dimensional analysis in the companion paper. They were
also very similar to points selected in the same way using elevations from the other DEMs. They
were, in order of removal, 341, 37, 369, 192, 378. The remaining 95 points are plotted in Figure 2
together with elevation contours of the 10 km resolution DEM.

Figure 2. Contour plot of the 10 km resolution DEM overlaid with positions of the 95 data points
selected for detailed analysis.

Since generalised cross validation (GCV) was unlikely to be completely reliable in
selecting and calibrating different spline models, due to the small size of the data set and the short
range correlation evident in the data, an additional five points were withheld from the data set.
These were also selected by the SELNOT procedure, as the five points which remain after points
were successively removed from the 95 closest data pairs. This is how the SELNOT procedure
normally selects knots to evenly sample the three dimensional space spanned by the data points.
This procedure was used to select spatially representative withheld data points in the analysis of
mean precipitation data by Hutchinson (1995a). The IDs of the points selected here were 13, 102,
138, 357, 466. The two sets of five removed points were combined into a data set of 10 withheld
points. Residuals from these points of spline functions fitted to the remaining 90 points were used,
together with the GCV, to guide model selection and calibration, including selection of DEM
resolution and optimising the scale of the elevation dependence.

5. OPTIMISATION OF DEM RESOLUTION AND ELEVATION SCALE
Initial analyses using a second order thin plate spline function of two horizontal

coordinates and one elevation coordinate yielded exact interpolation, despite the removal of close
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data point pairs. The spline order was then increased to three, so that the roughness penalty
defining the nature of the interpolation was calculated in terms of third order derivatives of the
fitted function. This yielded stable behaviour as close pairs were removed.

Elevations from the different DEMs were used at different scales in the third order spline
analyses. An elevation scaling of 100 times the position coordinates, as has been determined in
earlier thin plate spline analyses of precipitation (Hutchinson and Bischof 1983, Hutchinson
1995a) was initially selected. This was achieved by having position coordinates in kilometres and
elevation coordinates in decametres (i.e. obtained by dividing metres by 10). Table 2 shows the
square root of the GCV and the RMS residual from the 10 withheld data points, as functions of
DEM resolution. Both the GCVs and the RMS validation residuals indicated that a resolution of 10
km was appropriate.

DEM Resolution (km) Square Root GCV (mm1/2) RMS Residual from 10
withheld data points (mm1/2)

2.5 0.725 2.306
5 0.785 1.555
8 0.656 1.592
10 0.611 1.315
20 0.643 1.414

Table 2. Statistics of third order thin plate spline functions of station position in km and
station elevation in decametres, as obtained from DEMs of different  resolutions, fitted to
90 selected square root rainfall values.

A similar analysis of elevation scaling was performed, using different scalings of
elevations obtained, now from just the 10 km resolution DEM. The GCV and RMS validation
residuals confirmed the decametre scaling of elevation.

6. MODEL SELECTION
Using elevations from the 10 km DEM scaled in decametres, and position coordinates in

km, several spline models, including the models examined by Hutchinson (1995a), were fitted to
the 90 selected data points. In each case the degree of data smoothing was determined by
minimising the GCV. The types of spline models considered in this paper are listed in Table 3.

Model ID Functional form Description

 A f(x,y) Bivariate thin plate spline
 B f(x,y) + ah Trivariate partial thin plate spline
 C f(x,y,h) Trivariate thin plate spline
 D f(x,y,h) + ap + bq Quintvariate partial thin plate spline
 E f(x,y,p,q) Quartvariate thin plate spline

Table 3. Types of spline models. Horizontal coordinates are denoted by x,y. Elevation is denoted
by h. The eastern and northern components of the unit normal vector to the 10 km resolution
vertically exaggerated DEM are denoted by p and q respectively. Spline functions are denoted by f.
Fitted constants are denoted by a and b.

Model A denotes a bivariate spline function with no topographic dependence. Model B
denotes a trivariate partial spline function with a constant dependence on elevation. Model C
denotes a trivariate spline function with a spatially varying dependence on elevation. This spline
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model is commonly used to model monthly mean precipitation and temperature (Hutchinson and
Bischof 1983, Hutchinson 1991).

Model D denotes a quintvariate spline function with a spatially varying dependence on
elevation and a constant dependence on the two components of the unit normal vector to the 10 km
resolution DEM, as given by equations (1,2) above. Model E denotes a quartvariate spline function
with a spatially varying dependence on DEM slope and aspect but no explicit dependence on
elevation. Model E was not applied to the initial small data set. The two components of the unit
normal vector were calculated from the same vertically exaggerated DEM used to provide the
station elevations. This increases the relative orographic effect of smaller slopes.

Results of the initial analyses using these models, with various orders, are shown in Table
4. As reported in the companion paper, the third order bivariate spline was inferior to the second
order bivariate spline. Not surprisingly, in view of Figure 1(b), a partial spline dependence on
elevation did not yield a significant improvement over the second order bivariate spline.

The second order trivariate spline failed to produce any data smoothing, and was therefore
rejected, although both the GCV and the RMS validation residual suggested good predictive
performance. The third order quintvariate partial spline was selected for further analysis, since both
the GCV and the RMS validation residual were marginally smaller than the corresponding
statistics for the third order trivariate thin plate spline. There were conflicting indications of the
predictive performance of this model in relation to the predictive performance of the second order
bivariate spline model. The GCV suggests that the quintvariate model is superior, while the RMS
residual suggests that the bivariate spline is superior.

Model

ID

Order
of

spline
Signal Square root of

GCV (mm1/2)

Estimate of standard
deviation of model

error (mm1/2)

RMS residual from
10 withheld data
points (mm1/2)

A 2 78.4 0.740 0.266 0.854

A 3 54.4 0.762 0.480 1.393

B 2 78.4 0.748 0.268 0.841

C 2 90.0 0.655 0.0 0.708

C 3 71.9 0.611 0.274 1.315

D 3 71.6 0.585 0.265 1.160

Table 4.  Statistics of smoothing spline analyses of 90 selected data points with RMS residuals
from 10 withheld data points. The types of splines are indicated by the model IDs defined in Table
3.

The fitted constants for the quintvariate partial spline were a = -0.24 and b = -0.21. These
indicated a south western aspect effect on precipitation, with greater precipitation on south western
facing slopes and less precipitation on north eastern facing slopes. This was verified by referring to
the upper atmosphere winds above Payerne on the north western edge of the Alps. From 7 May to
8 May the wind direction above this station at the 700 hPa and 500 hPa levels moved slowly from
the south, through south west, to the west (Swiss Meteorological Institute, pers. comm.).

The quintvariate partial spline model was assessed in detail by applying it to the 95 data
points shown in Figure 2, consisting of all data points except those points removed from the five
closest pairs, as described above. Thus the five representative points chosen above were returned to
the analysis. The statistics for this model were quite similar to the statistics for the same model
applied to the 90 selected data paints. The signal for this model was 76.5, the square root GCV was
0.593 mm1/2 and the estimated standard deviation of the model error was 0.261 mm1/2. The
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coefficients of the two components of the unit normal to the vertically exaggerated 10 km DEM
were a = -0.23 and b = -0.22, with standard errors of 0.09 and 0.08 respectively. These standard
errors were estimated using the method described in Hutchinson (1993).

7. STATISTICS
Most statistics and maps are presented in terms of the square root analysis and for the

ensuing untransformed values, obtained by simply squaring all interpolated square root rainfall
values. Standard errors for the untransformed interpolated values were calculated using equation
(3) of the companion paper. All rainfall values are in units of mm and all square root rainfall values
are in units of mm1/2.

General statistics are presented in Table 5 and histograms of all 467 estimated values are
shown in Figure 3. These indicate close agreement with the means, slight reduction of the medians
and slight increase in standard deviation. The incorporation of topographic dependence has plainly
added variability. This is also indicated in the histograms of the interpolated values shown in
Figure 3, which show more variability than the data histograms shown in Figure 1 of the
companion paper.

Data Minimum Maximum Mean Median Standard
deviation

True square root values
(mm1/2) 0 7.19 4.07 4.02 1.39

Estimated square root
values (mm1/2) 0 7.64 4.06 3.87 1.56

True untransformed
values (mm) 0 51.7 18.5 16.2 11.1

Estimated untrans-
formed values (mm) 0 58.3 18.9 14.9 12.3

Table 5. General statistics for the withheld 367 data points and for the 367 estimated values.
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Figure 3. Histograms of (a) interpolated square root values and (b) squared interpolated square
root values, for all 467 data points.
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Figure 4. Scatter plots for the 367 withheld values: (a) untransformed data residuals versus  data
values (correlation = -0.22), (b) fitted untransformed values versus data values (correlation =
0.76).

Scatter plots of residuals and fitted values for the 367 untransformed data values are shown
in Figure 4. Comparative statistics, including the number of agreements with the actual 10 smallest
and largest values, are presented in Table 6. The bias in the square root and untransformed values
is negligible. Correlation between data residuals and data values is just -0.22, half of the correlation
for the bivariate spline analysis described in the companion paper. Similarly the correlation
between the fitted values and the data values is 0.76, significantly less than the correlation for the
bivariate analysis.

Data RMS Error Bias
Mean

Absolute
Error

Mean
Relative

Error

Number in
10 smallest

Number in
10 largest

Square root
(mm1/2) 0.969 -0.01 0.70 0.20 7 1
Untransformed
(mm) 8.14 +0.4 5.7 0.38

 Table 6. Comparative statistics for the 367 square root and untransformed rainfall data. The
number of agreements with the 10 smallest and 10 largest points of all 467 data points.

8. ERROR MAP FOR THE SQUARE ROOT RAINFALL VALUES
An isoline plot of the grid of standard errors of the interpolated square root values is shown

in Figure 5. This grid is calculated by the ERRGRD program, according to the method for
estimating spatially distributed errors described in Hutchinson (1993). This required prior
calculation of grids of the eastern and northern components of the unit normal to the 10 km
resolution DEM, with elevation units in decametres. The map is clearly related to both station
density and the topography shown in Figure 2. The largest estimated standard errors occur at the
highest elevations and at positions well beyond the data network.

9. MAPS FOR THE UNTRANSFORMED RAINFALL VALUES
A proportional symbol map of the untransformed data residuals is shown in Figure 6,

overlaid with an isoline plot of the grid of standard errors of the interpolated untransformed rainfall
values.
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Figure 5. Estimated standard errors for the interpolated square root values (mm1/2) overlaid with
the positions of the 95 data points used to fit the surface.

Figure 6. Proportional symbol map of untransformed data residuals, overlaid with isolines of
estimated standard errors (mm).
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This grid is calculated as in the companion paper, with grid values and isolines limited to those
grid values for which the estimated standard errors in Figure 5 do not exceed 0.9 mm1/2.
Interpolated values larger than the observed values are indicated by a cross and interpolated values
less than the measured values are indicated by a circle. The size of the residuals are in agreement
with the plotted standard error isolines, which now reflect topography, as well as data network
density and the magnitude of the interpolated rainfall.

Figure 7 shows an isoline plot of the grid of interpolated untransformed rainfall values,
overlaid with the symbols denoting the 10 smallest and 10 estimated largest rainfall data values.
This grid was calculated by simply squaring the interpolated square root values. The 10 smallest
values are in good agreement with the plotted isolines. The 10 largest values show less agreement,
again as for the bivariate analysis.

Figure 7. Isolines of the interpolated untransformed values (mm), overlaid with the 10 smallest
and 10 largest estimated rainfall data values.

Interpolated rainfall values exceeding 40 mm in the western half of Figure 7 indicate
rainfall enhancement by elevation, associated with the Jura Mountains and the north western
foothills of the Alps. Interpolated rainfall values exceeding 30 mm in the eastern half of Figure 7
are associated with south western facing slopes to the north of Lake Maggiore and inter alpine
valleys associated with the Rhine and Inn Rivers.

The largest positive residuals, indicated by crosses, appear to be associated with a
rainshadow effect south east of the Jura Mountains and a too large elevation enhancement of
precipitation on the north western face of the Alps. Similarly, the largest negative residuals,
indicated by circles, appear to be associated with a too strong decrease of precipitation with lower
elevation north of Lake Maggiore.
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10. INTERPOLATION ACCURACY AND PERFORMANCE
As in the companion paper, the accuracy of the interpolated values has been assessed by

calculating the standard error estimates plotted in Figure 6 and comparing them graphically with
the data residuals. The accuracy and performance of the quintvariate partial spline analysis is
slightly less than the accuracy and performance of the bivariate spline analysis. This can be
attributed to the lack of strong topographic dependence in this particular data set, and insufficiently
many data points to adequately calibrate topographic dependencies. Both analyses found the same
regions with the largest and smallest estimated values.

To more closely examine topographic dependencies, and to validate the model selection
procedure used above, the roles of the 100 data selected data points and the withheld 367 data
points were reversed. Thus various partial spline models were fitted to the 367 data points and the
100 data points were used for validation. Table 7 documents the performance of these models. The
quintvariate partial spline (model D) found the same  SW aspect effect, as found by the initial
quintvariate analysis, but the two most accurate models were a second order, three dimensional
thin plate spline function of position and elevation (model C), and a third order, four dimensional
thin plate spline function of horizontal position and the two components of the unit normal vector
to the 10 km DEM (model E). The GCVs and RMS validation residuals show strong agreement
with the analyses listed in Table 4. With the exception of the second order trivariate spline, all
models gave similar estimates for the standard deviation of model error (the nugget standard
deviation). The analyses also verified the optimisations of DEM resolution and elevation scale
described above.

Model

ID

Order
of

spline
Signal Square root of

GCV (mm1/2)
Estimate of standard
deviation of model

error (mm1/2)

RMS residual from
100 withheld data

points (mm1/2)

A 2 157 0.507 0.384 0.704
A 3 110 0.511 0.359 0.822
B 2 150 0.496 0.382 0.722
C 2 367 0.469 0.0 0.653
C 3 200 0.506 0.341 0.765
D 3 201 0.509 0.342 0.763
E 3 202 0.531 0.356 0.647

Table 7. Statistics of smoothing spline analyses of 367 selected data points with RMS residuals
from 100 withheld data points. The types of spline models are indicated by the model IDs defined
in Table 3.

Contour lines of the fitted mode E are shown in Figure 8, overlaid with the positions of the
actual 10 smallest and 10 largest rainfall values. This analysis shows a pattern more closely aligned
with topographic structure than the bivariate analysis in figure 9 of the companion paper. It also
models spatially varying topographic slope and aspect effects on precipitation which are missing
from the analysis in Figure 7. It shows enhancement of precipitation in the alpine foothills below
elevations of 1500 metres, with precipitation enhanced on southern facing slopes in the south, and
precipitation enhanced on western and north western facing slopes to the north west. These effects
are in keeping with the directions of the upper atmosphere winds reported above and the strong
topographic forcing associated with the Alps. These are also in close agreement with the
topographic effects reported in the precipitation climatology produced by Frei and Schar (1998).
The analysis afforded by model E provides an alternative to precipitation analyses based on
topographic aspect presented by Daly et al. (1994).
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Figure 8. Quartvariate thin plate spline analysis of the 367 data points, overlaid with the positions
of the 10 smallest and 10 largest measured rainfall values.

Such higher dimensional analyses are only possible with a larger data set. The larger GCV
associated with this analysis is probably a reflection of the larger number of boundary points
associated with higher dimensional analyses. The determination of the SW aspect effect by Model
D was quite sensitive to DEM resolution. The effect was lost for DEMs with resolution finer than
10 km. On the other hand model C, which depends on elevation but not aspect, was more robust
with respect to DEM resolution, with similar performance for the 8 km and 10 km resolution
DEMs.

11. CONCLUSION
The analyses have illustrated the flexibility of thin plate spline analyses, permitting rapid

assessment of a large number of candidate models. The analyses also show that small data sets can
be used to reliably calibrate topographic dependencies, despite problems associated with short
range correlation and the small size of the data set. The diagnostics associated with thin plate
splines assisted these assessments. The analyses also permitted assessment of DEM resolution and
elevation scale, an essential first step in calibrating topographic dependencies. The analyses are
feasible in emergency situations, especially if a standard DEM resolution and a standard elevation
scale are assumed. The elevation scale value optimised from the data in this case was in agreement
with previous experience.

The analyses confirmed the importance of incorporating spatially varying topographic
dependencies when analysing rainfall fields. In particular, fitting a constant linear dependence on
elevation performed no better than bivariate analyses independent of topography. The equal
accuracy of the models which had just a spatially varying dependence on elevation, or just a
spatially varying dependence on slope and aspect, indicates that there is room for further
investigation of these topographic dependencies.
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It should be kept in mind that this analysis was for just one day of rainfall data, and that the
topographic dependence of this data set is relatively small. Different synoptic conditions give rise
to rainfall patterns which may contain different topographic dependencies. In particular the
elevation dependence of convective and frontal rainfall is known to differ markedly. Moreover, the
absence of many zero rainfall data values in this data set, and the dense data network, both
significantly aided the analyses. Hutchinson (1995b) has argued the case for an anomaly approach
to rainfall interpolation when data are relatively sparse, using historical data to aid in determining
topographic dependencies.
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Abstract: Multidimensional smoothing splines are utilized to estimate the rainfall distribution 
from 100 rainfall measurements at irregularly spaced locations and from the corresponding 
elevation field on a fine grid. An interpolating spline of the elevation field is utilized to determine 
the elevation and the change in elevation at the irregularly spaced rainfall measurement locations. 
A smoothing spline is utilized to determine a rainfall surface utilizing the two dimensions of 
location, the elevation and the two dimensions of change in elevation as five independent variables 
and the rainfall measurement as the dependent variable. Predictions of rainfall are computed at 367 
irregularly spaced locations. The predictions are compared to the measured rainfall at the 367 
locations. 
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1. INTRODUCTION 
The task is to estimate rainfall at irregularly spaced locations from rainfall measurements 

at other irregularly spaced locations and, if useful, the elevation field on a fine grid. To accomplish 
this task requires assumptions about the rain field. The assumption made here is that the rain field 
at a location is related to the rain field at nearby locations in a smoothly varying way. The specific 
mathematical assumptions for the function smoothness are given elsewhere, see Wendelberger 
(1982a) for references. A similar assumption is made about the elevation field in order to 
determine the elevation and change in elevation at locations which are not on the fine grid. 

The data analyzed is related to the Chernobyl Nuclear Power Plant accident of the 26th of 
April 1986. During the days following the accident a radioactive plume was crossing  
some of Europe and radioactive deposition on the ground was mainly a function of the rainfall. 
Accurate and timely estimation of the daily rainfall distribution is important to help identify likely 
contaminated areas.  

The multidimensional smoothing spline with generalized cross-validation is the 
methodology used to estimate the rainfall distribution. The multidimensional smoothing spline is 
defined as the minimizing function, f * , of the objective function: 

 

( ) ( )O b j e c t i v e f L f z J f
R d

= − + ∫
2 λ . 



 108

Where, Rd  is Euclidean d - space , f  is an unknown function from Rd  to R1 , z  is an n by 1 
array of data observations, Lf  is an n by 1 array of linear functionals, L , acting on the function 
f  and is an unbiased estimate of z , λ  is a scalar, and J  is a penalty function. Under appropriate 

assumptions the minimizer of the objective function exists and is unique. 

The simplest and most well known case of the smoothing spline is the usual cubic spline. 
In this case the linear functionals are evaluation functionals the penalty function is the second 
derivative and the dimension is 1. That is: 

( ) ( ) dx
dx

xfdzffeObjectiveCubicSplin
R
∫ 








+−=

2

2

2
2 λ  

The minimizer of the CubicSplineObjective is the cubic spline. It is piecewise cubic function. 
Unfortunately, in higher dimensions and for more complicated functionals and penalty functions 
the minimizer of the Objective above is not that simple. 

2. AVAILABLE DATA 
The available data consists of 100 observations of rainfall at locations in Switzerland. 

Associated with the rainfall data is a terrain elevation field. This consists of a grid of 253 rows and 
376 columns of data with the associated elevation at the location corresponding to a point on the 
grid. The coordinates of another 367 points is provided to determine the prediction accuracy of the 
method used to analyse the data. The analysis of the data consists of using the supplied data to 
predict the rainfall that was recorded at the 367 locations.  

3. THE DETERMINATION OF SUITABLE INDEPENDENT VARIABLES 
The method of multidimensional smoothing splines with generalized cross-validation 

requires that appropriate independent variables be determined for the analysis. The independent 
variables selected are those that have the most predictive power in terms of prediction of rainfall. 
The dependent variable is the rainfall. An appropriate transformation of the dependent variable 
may be required to more closely satisfy the modeling assumption of homogeneous error variance. 

The most obvious independent variables are the location in space at which a measurement 
of rainfall is made. An appropriate scale of the two dimensions is required. The scale can be 
determined by the method of generalized cross-validation, see Wendelberger (1982a), 
Wendelberger (1987a) and Wendelberger (1987b). 

The inclusion of elevation information requires the determination of an appropriate scaling 
relative to the location dimensions. The scaling can be determined by the method of generalized 
cross-validation, see Wendelberger (1982a). An interpolating multidimensional smoothing spline is 
fit to all elevation measurements within 5,500 meters of the point at which the elevation field is to 
be determined, (m=3 and lambda=0). Here, m refers to the number of integrable derivatives of the 
function. Lambda =0 refers to an interpolating spline. Infinite lambda refers to a polynomial in a 
null space. Values of lambda between zero and infinity refer to different smoothing splines. The 
elevation field contains more information than only the elevation at the measurement point in 
question. It is desirable to utilize more information from the field. The derivatives of the elevation 
field in the two location dimensions are included as independent variables. An appropriate scale to 
the other independent variables is required. The scale can be determined by the method of 
generalized cross-validation, see Wendelberger (1982a). There was no attempt to optimize on the 
choice of m. The derivatives of the interpolating multidimensional smoothing spline fit to all 
elevation measurements within 5,500 meters of the point at which the elevation field is to be 
determined are obtained and utilized as independent variables. 
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The inclusion of the physics of the problem is also possible, see Wahba and Wendelberger 
(1980). One may work with climatologists directly to determine whether, for example, divergence 
or vorticity of the elevation field are more appropriate predictors than the first derivatives of the 
elevation field. If desired or required then the second derivatives of the elevation field may also be 
utilized. The second derivatives may be incorporated directly or in combinations, such as 
divergence and vorticity, see Wendelberger (1982b). The inclusion of the second derivatives and of 
transformations of these derivatives does complicate the model and should only be added if their 
inclusion adds significantly to the predictive power of the model compared to if they are not 
utilized.  

A generalization of the spline smoothing methodology utilized herein would determine a 
linear functional of the elevation field that is highly predictive of the rainfall. A linear functional 
generalization to incorporate the elevation field was not utilized here due to the additional 
computation and collaborative requirements. The linear functional may be an integral of a function 
of the elevation field over some geographical area. The generalization may provide a better model 
but would have required resources in time and climatalogical expertise that were not available at 
the time of this study. It seems likely that the wind field would be extremely valuable in this 
endeavor. The wind data was not included in the analysis presented here. 

The independent variables are identified as: location of the rainfall measurement, the 
elevation and derivatives of the elevation. It is necessary to determine the appropriate scale at 
which the independent variables are entered into the analysis. The scale determination 
methodology is the use of generalized cross-validation to choose the scale parameters, see 
Wendelberger (1982a).  

4. DEPENDENT VARIABLE TRANSFORMATION AND CONSTRAINT 
A dependent variable transformation could be determined by an objective method. Here it 

was decided, in an ad hoc manner, that no transformation would be performed. The model utilized 
did not enforce a constraint to provide a positive rainfall prediction. Due to the physical 
interpretation of the dependent variable as the amount of rainfall any negative predictions are set to 
zero. 

5. ESTIMATION OF SCALE 
A critical element of the estimated surface is the relative distance between a point in the 5-

dimensional independent variable space with another point in the 5-dimensional space. The x 
(longitude related) and w (latitude related) coordinates are in a natural metric (meters) and it is 
often assumed that no relative adjustment needs to be made to these coordinates. The elevation, z, 
and derivatives of elevation, dz/dx and dz/dw, are not expected to be in the proper scale to the 
surface distance (x,w). It is necessary to determine optimal scale parameters for these coordinates. 
The determination of these scale coefficients is be made by the method of generalized cross-
validation. Scalars i, j, k and l are determined so that the new coordinate system  

 (x,y,r,s,t) = (x,iw,jz,kdz/dx,ldz/dw) 

is such that absolute changes in any of the independent variables results in similar changes in the 
dependent variable, see Wendelberger (1982a) for details. The software utilized for the fitting of 
the multidimensional smoothing spline is that of the author. 

6. METHOD 
The method of generalized cross-validation is used to determine the appropriate scaling. 

There was no attempt to optimize on the choice of m. The independent variables are composed of 
the 100 irregularly spaced locations, the elevation and the derivatives of the elevation at the 
location. The independent variables are scaled appropriately. The dependent variable is the rainfall. 
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The method of estimation is a multidimensional generalized cross-validation smoothing spline. The 
main assumption behind the method is the existence of derivatives of the rain field. 

Any anisotropies in the underlying data that are represented by a function in the function 
space of the Objective are catered for by this spline technique. This is automatic as the anisotropies 
will be a component of the estimated function. Anisotropies in the underlying data that are 
represented within the data as heteroscadistic variances may be accounted for by inclusion of a 
correlation matrix in the norm of the Objective, see Wendelberger, 1982a.  

A local search/prediction neighborhood was not used. The spline was fitted over the whole 
data surface. The application and implementation of the method would be over the whole surface. 
Without data justification there is no need to subset the data into neighborhoods. This would 
unnecessarily complicate the analysis. For implementation, modern computers can easily handle 
the whole surface at once.  

The method is automatic. There is no need for pre-modeling. The input is the locations of 
the rainfall measurements and the height field. The output is a function that can be evaluated 
anywhere to determine the estimated rainfall at a location of interest. 

7. STATISTICS AND PERFORMANCE ON THE HOLDOUT DATA 
Summary statistics for the 367 values of the holdout sample and the 367 estimated values 

are provided in Figure 1.  

The residuals are summarized in Figure 2 and in Figure 3. The residuals are computed as: 

residual true fit ii i i= − =, ,...,1 367  

The value, truei , is the amount of rain in 1/10 mm’s at the i th site and the value, fiti , is the 
estimate of the rain in 1/10 mm’s at the i th site. Figure 2 shows there is skewness to the residuals. 
The residuals tend to be positive indicating that the predictions tend to underestimate the truth. 
Figure 3 indicates a pattern with the sequence number. The sequence number is related to the 
location of the estimate. Thus, the pattern indicates a spatial correlation of the residual values. 
 

 

Statistics 

 

Minimum 

 

Maximum 

 

Mean  

 

Median 

Population 
Standard 
Deviation 

True Values 
to be 

Estimated 
Only  

0 517 185 162 111.0 

For 
Estimated 

Values 
0 497 184 166 98.4 

Figure 1: Table of Statistics for the 367 True and Predicted Values 
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Figure 2: Residual Histogram 
 
The root mean squared error of the residuals is 65.21. The formula used to compute this is: 

Root Mean Squared Error residuali
i

=
=
∑1

367
2

1

367

 

This indicates that the estimated values do predict better than the mean level. This can be 
determined by noting that 65.21 is less than the standard deviation(s) in Figure 1. The absolute 
mean error is 47.8. The formula used to compute this number is: 

Absolute Mean Error residuali
i

=
=
∑1

367 1

367

| |  
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Figure 3: Residuals versus Sequence Number 

The relative mean error is .135 based on 362 nonzero true values. The formula used to compute 
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this number is: 

relative Mean Error
Cardinality P

residual
true

i

ii P
=

∈
∑1

( )
| |

 

where  

P i true ii= ≠ ={ | , ,..., }0 1 367  

and 

Cardinality P( ) .= 362  

The bias in the errors is 1.7. The error bias is computed as: 

Error Bias residuali
i

=
=
∑1

367 1

367

 

The small value of 1.7 for the error bias indicates that the estimated values tend to underestimate 
the true values by a small amount (.17mm).  

There are two estimates of variability. One is of the function or mean level and the other is 
of the error added to each individual measurement. A combination of these two will give the 
expected error of an individual observation. 

The residuals are plotted against the true values in Figure 4. A positive correlation between 
the true values and the residuals is evident. 

Residuals Versus True Values

-400

-300

-200

-100

0

100

200

300

0 100 200 300 400 500 600

True Values

R
es

id
ua

ls

 

Figure 4: Residuals Versus True Values 
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Figure 5: True versus Estimated Values 
 

Figure 5 plots the true value versus the estimated value. These values lie along the x y= line. 
There is a tendency to have larger variation for larger values. Further research into possible 
variance reducing transformations may be undertaken. 
 

 

Figure 6: 100 Original and 367 Holdout Data Locations 
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Figure 6 contains the locations of the original 100 data locations as filled black circles. The 
unfilled circles are the locations of the 367 holdout sample data locations. The contours in Figure 6 
are those of the estimated surface and are provided for reference between this and the following 
map figures. 

Inspection of Figure 6 reveals areas in which there are many holdout values and few 
nearby actual data values. The measurement of the fidelity of the estimate to the holdout sample is 
highly influenced by these areas. The few nearby points are said to have high leverage. If these 
values are measured high or low they will have high influence on the overall measurement of 
fidelity to the holdout sample due to the number of holdout values in this area. This is not a 
desirable feature of a fidelity measurement. A better measurement may be a comparison between 
an interpolating surface of the 367 values and the surface estimate from the 100 original values. 

Figure 7 contains the contours of the spline surface estimated from the 100 original data 
locations. The spline is utilized to estimate the rain field at the 100 original locations and the 367 
holdout data locations of Figure 6. SAS software is utilized to create the contour plot from the 100 
+ 367 = 467 estimated rainfall locations. The contours are at the levels of 0, 100, 200, 300, 400 and 
500 units. The units are 1/10 mm’s.  

A very detailed estimated surface was not created but could have been created by 
evaluating the spline estimate at a fine mesh and contouring the resulting mesh rainfall estimate 
values. 

An estimate for the accuracy of the predicted values is obtained for each of the predicted 
values as in Wendelberger (1982a). These accuracy’s are not presented here. 

 

 

Figure 7: Rain Field Estimated from 100 Observations 
 

Figure 8 is a proportional residual plot. The estimate at each of the holdout data locations is 
subtracted from the actual measured rainfall value to create 367,...,1, =−= ifittrueresidual iii .  
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The filled circles represent the positive residuals and the unfilled circles represent the 
negative residuals. The radius of each circle is proportional to the absolute value of the 
corresponding residual. 

There are small areas in Figure 8 that contain mostly negative or mostly positive residuals. 
The presence of these small areas indicates that there is spatial correlation in the residuals. 
 

 

Figure 8: Radius Proportional Residual Plot: 367 Observations of the Holdout Data 
 

The highest ten values and their predictions are given in Figure 9. The lowest ten values 
and their predictions are given in Figure 10. 

 
Highest 1 2 3 4 5 6 7 8 9 10 

True 517 503 493 445 444 434 434 432 429 426
Predicted 238 295 468 349 427 339 247 401 283 315

True-Pred. 279 208 25 96 17 95 187 31 146 111

Figure 9: Highest True Values and Their Predictions 
 

Lowest 1 2 3 4 5 6 7 8 9 10 
True 0 0 0 0 0 1 5 6 8 13 

Predicted 0 1 4 54 70 0 45 26 73 49 
True-Pred. 0 -1 -4 -54 -70 1 -40 -20 -65 -36 

Figure 10: Lowest True Values and Their Predictions 
 

The lower values are more accurately predicted than the higher values of rainfall as 
evidenced by the average magnitude of the difference between the true and predicted values. 

 



 116

Figure 11 contains the locations of the 10 largest and 10 smallest estimated rainfall values 
among the 367 holdout sample estimates. Three of the locations for the maximum estimated values 
are the same as three of the largest 10 from the 367 measured values. Four of the locations for the 
maximum estimated values are the same as four of the largest 10 from the 367 measured values. 
Exact agreement between the estimated and the measured values is not expected due to the 
variations inherent in the rainfall measured values. 
   

 

Figure 11: 10 Maximum and 10 Minimum Estimated Rainfall Measurements 

A virtual decision maker could utilize the map in Figure 11 to determine the areas of 
largest estimated rainfall out of the 367 locations that are estimated. Instead of this map an 
estimated field over the entire area of interest may be created. This field map could then be utilized 
to indicate the areas in the region that are predicted to have highest rainfall, unrelated to the 367 
locations, either irrespective of other variables or in concert with the other variables. For example, 
high rainfall in an area of little or no population may be less significant than slightly lower rainfall 
in a highly populated area. 

8. EMERGENCY USE  
The method can be applied in the case of a nuclear accident to monitor radioactivity in the 

environment. The method is appropriate in both an automated environment and for long term 
management. It is suggested that the actual radioactivity be the dependent variable and rainfall 
become an independent variable with other appropriate environmental factors, such as, wind speed 
and direction.  

In emergency situations the method can be used on an appropriate personal computer to 
determine the predictions in a matter of seconds after entering the input data. The method could 
utilize the environmental radioactivity measurements as the dependent variable. In this case the 
predictions would be of environmental radioactivity. 

The method is well adapted to long term management. The method can utilize physical 
properties of the interaction between different relevant environmental fields. Along with the 
elevation and rainfall measurements, measurements of wind strength and velocity and 
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environmental radioactivity can be incorporated into the mathematical formulation of the 
multidimensional smoothing spline. This incorporation may require changes to the linear 
functional of the reproducing kernel utilized in the method and therefore may require a longer time 
period than the emergency situation. However, after the appropriate physical properties are 
incorporated into the model then the modified system could be utilized in emergency situations. 

9. CONCLUSION 
The methodology of multidimensional smoothing splines is extremely well adapted for the 

problem described here and for future improvements to the model. The methodology does not 
loose accuracy in conversion to a grid and it can incorporate physical properties of the 
environment. The methodology of multidimensional smoothing splines with generalized cross 
validation is an excellent way to proceed in the analysis of radioactivity in the environment. 

The rainfall in Switzerland that is associated with the Chernobyl incident can be 
reasonably estimated from as few as 100 rainfall measurements and the associated elevation field.  
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Abstract This paper discusses the use of robust geostatistical methods on a data set of rainfall 
measurements in Switzerland. The variables are detrended via non-parametric estimation penalized 
with a smoothing parameter. The optimal trend is computed with a smoothing parameter based on 
cross-validation. Then, the variogram is estimated by a highly robust estimator of scale. The 
parametric variogram model is fitted by generalized least squares, thus taking account of the 
variance-covariance structure of the variogram estimates. Comparison of kriging with the initial 
measurements is completed and yields interesting results. All these computations are done with the 
software S+SPATIALSTATS, extended with new functions in S+ that are made available.  
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1. INTRODUCTION  
Statistical methods widely known under the name kriging are intended to predict 

unobserved values of a variable in a spatial domain, on the basis of observed values. These 
techniques are based on a function which describes the spatial dependence, the so called 
variogram. Therefore, variogram estimation and variogram fitting are important stages of spatial 
prediction. Because they determine the kriging weights, they must be carried out carefully, 
otherwise kriging can produce unreliable maps.  

In practical situations, a fraction of outliers is often included in observed data. Experience 
from a broad spectrum of applied sciences shows that measured data contains as a rule between 10 
to 15 percent of outlying values due to gross errors, measurement mistakes, faulty recordings, etc. 
One might argue that any reasonable exploratory data analysis would identify and remove outliers 
in the data. However, this approach is often subjective and outlier rejection is highly opinion 
dependent. Thus, in this paper, we advocate the use of robust geostatistical methods, which prevent 
the negative effects of outlying values. Note that the existence of exploratory techniques does not 
supersede the utility of robust techniques. 

The data set contains N=467 measurements of rainfall in Switzerland, from which only 
n=100 were made available. A complete description of the data set, as well as the location map of 
the measurements, are presented in an introduction report. However, we would like to point out the 
skewness in the first histogram of Figure 1, and the possibly bimodality of the distribution of the 
data. Therefore, a logarithmic transformation is applied on the data, followed by centering and 
reducing operations. The resulting histogram is visualized in Figure 1.  
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Figure 1: Histogram of the observations and histogram of the transformed observations 
(logarithm followed by centering and reducing). Note the skewness and possibly bimodality of the 
distribution of the data. 

In order to describe the data, the following simple model is used for the rainfall variable  

Z(x)= m(x) + ε(x),                    x = (x,y)T, (1)

where m(x) is the deterministic part of Z and ε(x) the stochastic one. Because of the local behavior 
of the data, the trend m(x) is computed by a non-parametric approach and removed, as shown in 
the next section. Highly robust variogram estimation is performed in section 3, followed by 
generalized least squares variogram fitting in section 4. Finally, kriging results are discussed in the 
last part of this paper.  

2. TREND DETECTION  
The first step of spatial data analysis consists in detecting the trend of the variables 

(Cressie, 1991), i.e. we determine m(x), the non-stochastic part of (1). Figure 2 shows the trend 
surfaces of the n = 100 rainfall measurements of the data set drawn with the command symbols 
in S+. We note the local behavior of the trend. By comparing the trend with the geographic 
characteristics of Switzerland, we verify that there is a correspondence between the amount of 
rainfall and the elevation of the measures (plain and mountains), as well as with particularly sunny 
counties like Wallis.  

 
Figure 2: Trend for the n=100 measurements of the rainfall data set. Bigger circles represent 
higher amount of rainfall.  
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It is not appropriate removing such local drifts by adjusting a polynomial trend surface as 
shown in Venables and Ripley (1994). A non parametric adjustment is much more sensible to local 
variations and is therefore more suitable. It is also a simple way of taking account of the elevation 
of the measurements. The function loess fits a local regression model of second degree. To apply 
a robust fitting, we suppose not a Gaussian but a symmetric distribution of the errors and set 
therefore the argument family=symmetric, as well as normalize=F. Full details of loess 
are given by Cleveland et al. (1992).  

The problem of choosing the smoothing parameter λ is ubiquitous. Often, in geostatistical 
approaches, exploratory work helps to find a value for a ``good looking'' surface. To avoid this 
ambiguousness, we apply the principle of cross-validation (Green and Silverman, 1994). The basic 
idea of cross-validation is to choose the smoothing parameter λ which minimizes the criterion 
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where ),(ĝ )( λ−
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i x is the nonparametric estimation of m(xi) in omitting the observation xi from the 
data set and with smoothing parameter λ . This criterion ensures stability of the fitted surface. In 
this work, the predictor ),(ĝ λx is the function loess. In general, the function CV(λ) decreases to 
a global minimum at λmin close to 0, and converges to a horizontal asymptote CV(∝). Figure 3 
shows the function CV(λ) for the transformed rainfall data.  

 

Figure 3: The cross-validation criterion CV(λ). It decreases to a global minimum at λmin = 0.16, 
and converges to a horizontal asymptote CV(∝). 
 

We get CV(λmin) = 0.425 at (λmin) = 0.16 . Note that the estimation of loess with 
smoothing parameter λ =∝ models a parabolic surface which is not sufficiently effective to remove 
local trends. Thus we removed the non-parametric trend )16.0,x(ĝ)x(m̂ min == λ  from Z(x) , the 
transformed data set.  
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3. HIGHLY ROBUST VARIOGRAM ESTIMATION 
Variogram estimation is a crucial stage of spatial prediction, because it determines the 

kriging weights. It is important to have a variogram estimator which remains close to the true 
underlying variogram, even if outliers (faulty observations) are present in the data. Otherwise 
kriging can produce non-informative maps. Let ε(x) = Z(x) - m(x), be the detrended spatial 
stochastic process, which is assumed to be intrinsically stationary. The classical variogram 
estimator of a sample ε(x1), …, ε(xn) proposed by Matheron (1962), based on the method-of 
moments, is 

( )∑ ε−ε=γ
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)()()(ˆ
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xxh
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2
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12 ,          ∈h  ℜd (3)

where N(h)={( xi, xj): xi, - xj = h}and Nh is the cardinality of N(h). This estimator is unbiased, but 
behaves poorly if there are outliers in the data. One single outlier can destroy this estimator 
completely. However, it is not enough to make simple modifications to formula (3), such as the 
ones proposed by Cressie and Hawkins (1980), in order to achieve robustness. In this section, we 
advocate the use of a highly robust variogram estimator (Genton 1996, 1998a)  

2Q2 )()(ˆ N h
h =γ ,            ∈h  ℜd (4)

which takes account of all the available information in the data. It is based on the sample V1(h) ,…, 
VN(h) from the process of differences V(h) = ε(x + h) - ε(x) and the robust scale estimator QNh, 
proposed by Rousseeuw and Croux (1992, 1993) 

QNh = 2.2191{| Vi(h) - Vj(h)|; i < j}(k) (5)

where the factor 2.2191 is for consistency at the Gaussian distribution,  
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and [Nh/2] denotes the integer part of Nh/2. This means that we sort the set of all absolute 
differences |Vi(h)-Vj(h)| for i < j and then compute its k-th quantile ( k ≈ ¼ for large Nh). This value 
is multiplied by the factor 2.2191, thus yielding QNh. Note that this estimator computes the k-th 

order statistic of the 







2

N h  interpoint distances.  

At first sight, the estimator QNh appears to need computation time, which would be a 
disadvantage. However, it can be computed using no more than time storage, by means of the fast 
algorithm described in Croux and Rousseeuw (1992).  
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Figure 4: Omnidirectional variogram estimated by QNh and fitted by generalized least squares 
(GLSE). 
 

This variogram estimator possesses several interesting properties of robustness. For 
instance, its influence function, which describes the effect on the estimator of an infinitesimal 
contamination, is bounded. This means that the worst influence that a small amount of 
contamination can have on the value of the estimator is finite, in opposition to Matheron's classical 
variogram estimator. Another important robustness property is the breakdown point ε∗ of a 
variogram estimator, which indicates, how many data points need to be replaced to make the 
estimator explode (tend to infinity) or implode (tend to zero). The highly robust variogram 
estimator has an ε∗  = 50% breakdown point on the differences V(h), the highest possible value, 
whereas Matheron's classical variogram estimator has only an ε∗ = 0% breakdown point, the lowest 
possible value. More details about the use and properties of this estimator, including some 
simulation studies, are presented in Genton (1998a).  

We set the lag unit to u = 5000m, which is a reasonable approximation for the nearest 
neighbor distance mean in east-west (E-W) and north-south (N-S) direction. We estimate the 
variogram at lags hi = iu, i = 1,...,30, with the common tolerance of a half unit to achieve higher 
robustness. We compute the directional variogram for the N-S and the E-W direction, as well as 
the omnidirectional variogram with (5) by using variogram.qn, a new function in S+. The N-S 
and E-W directional variograms show similar behavior, suggesting an underlying isotropic process. 
Therefore we decide to fit the omnidirectional variogram (Figure 4).  

4. VARIOGRAM FITTING BY GENERALIZED LEAST SQUARES 
Variogram fitting is another crucial stage of spatial prediction, because it also determines 

the kriging weights. Careful fitting implies on one hand the use of a highly robust variogram 
estimator (Genton, 1998a). On the other hand, variogram estimates at different spatial lags are 
correlated, for the same observation is used for different lags. As a consequence, variogram fitting 
by ordinary least squares is not satisfactory. This problem is addressed by Genton (1998b), who 
suggests the use of a generalized least squares method with an explicit formula for the covariance 
structure (GLSE). A good approximation of the covariance structure is achieved by taking account 
of the explicit formula for the correlation in the independent case. Simulations were carried out 
with several types of underlying variograms, as well as with outliers in the data. Results showed 
that the (GLSE) technique, combined with a robust estimator of the variogram, improves the fit 
significantly.  
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Consider a omnidirectional variogram estimator for a given set of lags h1, ..., hk, where 1 ≤ 
k ≤ K and K is the maximal possible distance between data. Denote further by 

∈γγ=γ T))(hˆ),...,(hˆ(ˆ k1 222  ℜk the random vector with variance-covariance matrix 
Ωτ=γ 22Var )ˆ(  where τ2 is a real positive constant. Suppose that one wants to fit a valid 

parametric variogram 2γ(h,θ) to the estimated points γ̂2 . The method of generalized least squares 
consists to determine the which minimizes 

))(ˆ())(ˆ()G( T θθθ γ−γΩγ−γ= − 2222 1  (6)

where ∈γγ=γ T)),(h),...,,(h()( θθθ 11 222  ℜk is the vector of the valid parametric variogram, and 
∈θ  R p is the parameter to be estimated. Note that 2γ(h,θθθθ) is generally a nonlinear function of the 

parameter. Journel and Huijbregts (1978) suggest to use only lag vectors hi such that Nhi > 30 and 0 
< i ≤ K/2. This empirical rule is often met in practice, and is used in this work. The GLSE 
algorithm is the following:  
  
[1] Determine the matrix Ω = Ω(θθθθ) with element Ωij given by 

jhihjijiCorr NN/),(h),(h))(hˆ2),(hˆ2( θθ γγγγ  (7)

[2] Choose θθθθ(0) and let l= 0. 

[3] Compute the matrix Ω = Ω(θθθθ(l)) and determine θθθθ(l+1) which minimizes 

))(ˆ()())(ˆ()G( (l)T θθθθ γ−γΩγ−γ= − 2222 1  (8)

[4] Repeat [3] until convergence to obtain θ̂ . 

In step [1], the correlation ))(hˆ2),(hˆ2( jiCorr γγ can be approximated by the one in the independent 
case. An explicit formula can be found in Genton (1998b), which depends only on the lags hi and 
hj, as well as on the size n = n1n2 of a spatial rectangular data set. In step [2], the choice of θ(0) can 
be carried out randomly, or with the result of a fit by ordinary least squares (OLS).  
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has been fitted to the empirical omnidirectional variograms by GLSE using glse.fitting, 
another new function in S+. The starting value θ(0) was set as the solution of a fit by OLS. The 
estimated parameter is θ̂  = (0.003, 0.113, 7.938). To calculate (7), we neglected the irregularities 
of the grid and set n1 = 60 and n2 = 40, which is a crude approximation of the grid.  

5. KRIGING AND DISCUSSION OF THE RESULTS  
Epitomizing, kriging is a linear interpolation method that allows predictions of unknown 

values of a random function from observations at known locations. For further details see Cressie 
(1991). S+SPATIALSTATS performs 2-dimensional kriging by using the krige and 
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predict.krige functions. The kriging results are easily visualized with the functions 
contour or persp. Further details and examples are given by Kaluzny et al. (1996). Figure 5 
shows the kriging maps for the rainfall data. The ten lowest values are represented by circles and 
the ten highest by squares.  

 

Figure 5: Kriging map of the rainfall data. The ten lowest values are represented by blue circles 
and the ten highest by red squares. 
 

Figure 6 visualizes the corresponding errors and kriging variances respectively. The 
overall performance of our method in predicting the remaining 367 rainfall data is summarized in 
Table 1. We consider the true values Z(x), the estimated values (by kriging), the errors, the 
absolute errors |e(x)|and the relative errors |e(x)|/Z(x). For each of these quantities, the minimum, 
the maximum, the mean, the median and the variance is computed. The distribution of the 
estimated values by kriging is in close agreement with the distribution of the true values. This is 
confirmed by a plot of estimated values (horizontal) against true values (vertical) in Figure 7.  

 
  min max mean median std. dev. 

 true values 0 517 185 162 111 
 estimated values 14 433 171 151 96 
 errors -255 230 -14 -10 61 
 absolute errors 0 254 32 44 43 
 relative errors 0 3.31 0.32 0.21 0.42 

Table 1: This table presents the minimum, the maximum, the mean, the median, and the standard 
deviation for the 367 true rainfall values, the estimated values, the errors, the absolute errors, and 
the relative errors. 
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Figure 6: Absolute errors and kriging variances corresponding to the kriging map of the rainfall 
data. 
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Figure 7: Plot of estimated values (horizontal) against true values (vertical). 

A small positive bias is however revealed. A plot of observed (true) values against 
residuals in Figure 8 indicates that small values are generally overestimated whereas large values 
are underestimated.  

 

Figure 8: Plot of observed (true) values (horizontal) against residuals (vertical). 
 
Proportional plots of the absolute errors and relative errors in Figure 9 indicates the locations of the 
smaller or higher errors. It seems to be correlated with the smaller or higher rainfall measurements. 
The root mean squared error is RMSE = 62 and should be compared with other predicting methods. 
Table 2 compares the prediction of the ten lowest values and the ten highest values of the initial 
data set with the corresponding estimated values. This method identified four respectively three 
locations of the ten highest respectively ten lowest values of the initial data set. The performance in 
predicting the lowest and the highest 10 rainfall measurements can also be summarized by the root 
mean squared error RMSEmin= 15 and RMSEmax= 19 respectively. It seems that lower values are 
more accurately predicted than higher ones.  

This method of rainfall prediction can be useful for the monitoring of accidental releases of 
radioactivity in the environment, because it doesn't require huge computations, nor subjective 
modeling decisions. The procedure is straightforward and almost automatized with the new 
available S+ functions. As rainfall is strongly correlated with radioactive fallout of accidental 
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releases, this method can easily be used for emergency situations.  

 

 

 

 

 Figure 9: Proportional plots of the absolute and relative errors for the kriging of the rainfall 
measurements. Positive errors are represented by red circles, negative errors by blue circles. 
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ten lowest values ten highest values 

true values estimated values true values estimated values 
0  57 434  300  
0  55  434  253  
0  33  441  441  
0  27  444  369  
0 29  445  377  
1  41  452  452  
5  22  493  433  
6  20  503  249  
8  26  517  262  

10  10  585  585  

Table 2: This table compares the prediction of the ten lowest values and the ten highest values of 
the initial data set with the corresponding estimated values. 

6. CONCLUSIONS 
In this paper we have studied a data set of rainfall measurements in Switzerland. As local 

drifts are typically present in the data set due to geographical characteristics and elevations, the 
observations have been detrended by a non-parametric surface, based on a cross-validation 
criterion. Then, robust methods have been applied for variography with the software 
S+SpatialStats. First, the variogram was estimated by a highly robust estimator. Second, the 
fit of the variogram estimates was done by generalized least squares thus taking account of their 
statistical properties. Kriging has been performed and the overall performance analyzed by various 
criterion. Results are of course different from the true values, but however in good agreements. 
Thus, our model is a simple way of studying such data sets, without the need of huge 
computations. As rainfall is strongly correlated with radioactive fallout of accidental releases, this 
method can easily be used for emergency situations.  

The S+ functions used are made available at http://dmawww.epfl.ch/~furrer/SIC97/ 
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Abstract: We propose here an interpolation method based on a decomposition of the data in 
large- and small-scale variation. This decomposition was performed using a two-way directional 
decomposition, similar to the decomposition used by Cressie in his median-polish kriging (1993), 
though we applied a decomposition by means instead of medians. We considered the effects 
isolated by the decomposition as associated to intervals along the two directions, and not to a row 
or column co-ordinate. We replaced the "plating" used by Cressie to interpolate large-scale 
variation between grid rows and columns by the fit of a more continuous surface, with surface 
mean over each interval accounting for its associated mean effect. Residuals were predicted by 
kriging. However, as residual variance appeared to be strongly linked to large-scale-variation 
structure, we did not assume variance stationarity. Rather, we built a variance predictor based on 
this structure and modelled the data continuity through a relative variogram, relative to the sum of 
predicted variances at the tail and head of the lag vector. In the kriging equations, the variogram 
value used to characterize the variation between two locations was the relative variogram 
corresponding to the lag separating these two locations, rescaled by the sum of variance predictors 
at these two locations. 

Keywords : trend, two-way decomposition, kriging, non-stationary variance, relative variogram. 
 

1. FOREWORD. 
When dealing with interpolation, the first question we can ask ourselves is: “What do we 

want to predict ?” More or less outlying measures are often present among a data set. There are 
two “usual” ways to deal with them : (1) to identify them by some statistical procedure and to 
remove them from the data used to model the process which is supposed to be at the origin of the 
data; (2) to use so-called “robust” techniques, that will automatically downweight such data. The 
first technique is often considered too strong (except if the considered data clearly are errors in 
measurements or retranscriptions), as even outlying data may be thought to support information 
(see, e.g., Cressie 1993, p.144). The second method may seem more appropriate, but will anyway 
be the expression of our acceptance that some measures are wrong in some way, or do not respect 
the statistical model we chose to fit to them. Robust methods are built to downweight apparently 
aberrant data. Clearly, they will be unable to reproduce these data through the process of 
prediction. In this exercise, our purpose will be to predict the measures including, as much as 
possible, the more extreme ones. We have no theoretical reason to believe that some data are in 
error in any way, and we hope our models to be able to describe the more extreme as well as the 
more usual ones. We chose therefore deliberately not to use any robust method, hoping the 
complete data set may be adequately represented by a statistical model. 
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2. DECOMPOSITION OF PRECIPITATION INTO LARGE-SCALE AND SMALL-
SCALE VARIATION. 

2.1. Why did we choose to perform a decomposition ? 
Taking a look at the mapped data (Figure 1 – this map, as others in this paper, was 

generated by SURFER 5.01), even the inexperienced eye will detect an obvious anisotropy in their 
behaviour. Any transect along the NW-SE direction will exhibit very strong variation in the 
precipitation, usually showing three minima surrounding two clear maxima. Variation along NE-
SW transects is much less obvious. 
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Figure 1. Map of available precipitation data (symbol radius is proportional to measured 
precipitation – this choice was made to enhance variation but may render some data points with 
very small precipitation value nearly invisible). Notice the fairly clear pseudo-periodic variation 
following NW-SE direction, with two obvious maxima surrounded with three minima. Variation 
along SW-NE direction is much less obvious 
 

This phenomenon has a strong influence on any attempt to build variograms on the basis of 
this data set : directional variograms do not behave in the same way along the various directions. In 
the NW-SE direction, data pseudo-periodicity leads to a semivariogram that increases largely 
above the data-set variance, reaches a maximum for lags corresponding to about a half-period of 
the variation, then decreases strongly at the largest lags. This behaviour is not present along the 
NE-SW direction, producing a more monotonous variogram. 

According to Cressie (1993), decomposition of data into large-scale and small-scale 
variation is largely a choice of the statistician. Many problems can be modelled either by 
decomposing the process into sub-processes exhibiting more simple behaviours, or by making the 
covariance function used to describe the full process more complex. In the current application, 
adequate description of the process underlying the data without performing any decomposition 
would require to fit the directional variograms with different theoretical models, which causes 
transition problems between the two main directions. Furthermore, the pseudo-periodicity along 
the NW-SE direction occurs only on one and a half period, which is small to describe it in a 
statistical way. We believe that this periodicity at least would be best described as part of a trend, 
which led us to decompose the data into large-scale and small-scale variation. That is, according to 
Cressie’s notations (1993), to assume : 

)()()( sss δµ +=Z  

where s is a vector denoting location, Z(s) is the potential datum at this location, E(Z(s)) = µ(s) is a 
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large-scale-variation deterministic structure, also referred to as the trend, and δ(s) is a zero-mean 
process, supposed to be stationary. There are two great types of methods that can be used to 
perform such a decomposition, that are both largely described by Cressie (1993). First, the large-
scale variation can be assumed to follow a given mathematical expression : a spatially explicit 
mathematical model can then be fit to the data through some kind of regression. This leads to 
methods such as the well known "universal kriging". These methods always require quite strong 
assumptions as to the form of the model. Second, one can try to isolate the large-scale variation 
without making assumptions about its form. We chose to use a method rather similar to the one 
used in Cressie’s median-polish kriging (Cressie 1993). 

2.2. The theory beyond the proposed decomposition method. 

2.2.1. Two-way decompositions. 

Two-way decompositions of data into two main directional effects is not a new idea, one of 
the most fully documented application of it being “median-polish kriging”, extensively described 
by Cressie (1993). Median polish was initially presented by Tukey (1977) as a fast and robust way 
to decompose gridded data into global, row and line effects. The principle is rather simple, and 
follows the idea of any two-way decomposition : 

)(effect"row "effect" column"effect" global")( ss δ+++=Z  

In practice, row and column medians are alternately extracted from the gridded data, subtracted to 
them to produce residuals, and accumulated into “row” and “column effects”. Simultaneously, 
“column” and “row-effect” median are subtracted to these effects and accumulated into a “global 
effect”. At any step of this operation, the sum for any data point of the “global effect”, “row 
effect”, “column effect” and of this datum residual equals the original datum. This algorithm is 
normally repeated until convergence. The method was later used by Cressie (1993) to isolate large-
scale variation in gridded and non-gridded spatial data sets, and produce stationary residuals, 
suitable for kriging. The global method is referred to as “median-polish kriging”. According to this 
author, any other averaging operation than median extraction will lead to its own version of the 
decomposition : median polish is just presented as an easy way to produce resistant estimates of the 
trend. As previously stated, we did not want to use particularly resistant methods, so we preferred 
to perform a decomposition by means, rather than by medians. 

2.2.2. The problem of non-gridded data. 

Two-way analysis is straightforward and natural when dealing with gridded data, with data 
points already arranged in rows and columns. With non-gridded data, Cressie’s recommendation 
(in the case of median polish) is to superpose a low-resolution grid to the data, to assign each 
datum to the nearest grid node, and to perform the median polish assuming the data were gridded. 
Linear interpolation and extrapolation, respectively within and outside the grid, are then used to 
achieve the definition of a large-scale variation surface, covering the whole spatial domain within 
which predictions are needed. At this stage, data are replaced at their original location, and 
residuals can be obtained by subtracting them the value of the median-polish surface at this 
location.  

We can see two shortcomings in this method. First, “row” and “column effect” are, in 
reality, not associated to the grid row or column co-ordinates, but to intervals over which these 
rows or columns have an influence. A direct consequence is that, if a row or column corresponds to 
an extremum in “row” or “column effects”, the large-scale variation associated to this row or 
column will always be averaged over the associated interval; linear interpolation will not take this 
effect into account and might yield locally non-stationary residuals. Second, statistical 
interpolation procedures such as kriging take advantage of data continuity and smoothness, and 
assume that the variable exhibits the same behaviour over the whole study area. If the data 
themselves are assumed to be smooth, subtracting them a surface that, being a juxtaposition of 
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secant planes, exhibits slope discontinuities, will likely result in a loss of smoothness. This might 
yield residuals with larger variogram values, which would increase interpolation uncertainties. 
Furthermore, it is probable that residuals will behave differently away and close to the trend-
surface discontinuities. These two problems will be most obvious if the trend exhibits strong 
extrema and if intervals are large (sparse data, leading inevitably to a very low-resolution grid). 

2.2.3. Proposed solution. 

We will therefore try to propose an equivalent method that might avoid these problems. 
First, instead of superposing a grid to the sampled domain, we will divide it into intervals, 
following two main perpendicular directions, say x and y (in practice, these two methods are 
perfectly equivalent, but we prefer to avoid the concept of displacing data from their original 
location to a subjective grid-node). Two-way analysis may then be performed on the basis of x and 
y-classes and will produce exactly the same results as in Cressie’s grid-based method. As we chose 
to make a decomposition by means, these results will be mean effects : estimates of the difference 
between the global mean and the mean over each particular x or y-class. Next step is to find a 
surface, defined over the whole domain, that will (1) ensure that the mean over each x- and y-class 
has the value isolated through two-way decomposition and (2) respect the assumed continuity of 
the large-scale variation. In the same time, we would like to preserve the advantages of the 2-way 
decomposition, that does not require any preliminary hypothesis about the global form of the large-
scale variation. Let’s concentrate on one x or y-interval. In Cressie’s method, the trend effect over 
this interval is modelled by two straight-line segments, intersecting at the grid row or column co-
ordinate. Instead, to avoid the discontinuity created by this intersection, we will try to describe this 
segment’s trend effect with one and only one equation. The mean value of this equation over the 
interval has to equal the mean effect given by the decomposition. Simultaneously, to ensure 
continuity between contiguous intervals, we will impose that both the values of this equation and 
of its first derivative at each interval extremity must equal those of the similar equations describing 
the trend over contiguous intervals. Now, if we defined n intervals along this direction, we are left 
with 3n-2 constraints. There is no theoretical reason to select any particular equation to describe 
the large-scale variation over each interval, but we need at least as many parameters in the 
complete equation system as we have constraints. We chose to use polynomial expressions, mainly 
because they are easy to handle. In the aim to allow for some asymmetry and/or for the presence of 
an inflexion point within the trend in an interval, we chose expressions of the 3rd degree. For n 
intervals, we will therefore introduce 4n parameters in the equation system : having more 
parameters than constraints, the system is not determined. Constraints have to be added to reach 
only one solution. Our main idea here will be that we want, as much as possible, to avoid to 
"create" information (such information “creation” might happen, for example, if we described a 
constant mean with a periodic function : the mean of the model over each interval could indeed 
equal the mean of the process, but the periodicity is “created” information that does not exists in 
reality). To avoid this kind of problem, we propose to minimise the trend variation, over the whole 
sampled domain. An analytically easy way to achieve this result is to minimise the integral of the 
squared first derivative of the trend over the domain. This minimisation will act as additional 
constraints. Rewrite the decomposition in terms of the data : 
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The “global effect” za is estimated from the decomposition. We need a unique definition for z(x) 
and z(y) that would be valid over the whole sampled domain. The observed trend effect <zk>obs 
over any x-interval k ranging from xk min to xk max, will be modelled by a 3rd-degree polynomial 
expression : 
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Its first derivative is given by : ∑
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And the mean of this expression over the interval is given by : 

∑
=

++
+ −

−
=><

3

0

1
min

1
max1

1

minmax
)(1

i

i
k

i
kiki

kk
k xx

xx
z β  

The constraints may therefore be written as follows : 
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The first equation imposes equality between the mean of the model and the observed mean effect 
over each x-interval, the second one imposes continuity in the trend value between every pair of 
contiguous x-intervals, and the third one imposes continuity of the trend first derivative between 
these pairs of intervals. The trend squared variation may be written : 
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which is what we want to minimise. The constraints will be introduced in the equation system 
through the Lagrange parameter method. Therefore, instead of the last expression, we will 
minimise : 
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where the λk, µk and νk are respectively n, n-1 and n-1 Lagrange parameters. Minimisation may be 
achieved by differentiating this equation with respect to the βik and to the Lagrange parameters and 
setting the derivatives to zero. Differentiation with respect to the βik produces 4n equations, 
namely : 
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while differentiation with respect to the Lagrange parameters simply reproduces the 3n-2 
constraints. We are therefore left with a linear system of 7n-2 equations that can be solved through 
one single matrix inversion. Determination of these parameters allows us to define uniquely z(x). 
Similar calculations lead to the definition of z(y), and an estimate of the large-scale variation is 
therefore given by : 

)()()( sss yzxzza ++=µ  

The residual R(si) may be obtained simply by subtracting the trend value to the data Z(si). 
 

2.3. Application to the precipitation data. 
Our main aim when applying a large-scale versus small-scale variation decomposition was 

to isolate the pseudo-periodic behaviour of precipitation along the NW-SE direction. To ensure that 
this goal would be reached, we performed a 45-degrees rotation of the axes before to apply the 
decomposition itself. In the remaining part of this paper, the data-point locations will therefore be 
described in terms of northeasting and southeasting. The area was divided into 11 southeasting and 
6 northeasting classes. The results of the two-way decomposition are summarised in Table 1.  

The above-described equation system was then applied, and produced the parameters 
required to describe the trend through 3rd-degree polynomial expressions. These parameters are 
summarised in Table 2.  

Figure 2a shows precipitation large-scale variation surface, modelled over the whole 
sampled domain. For comparison purposes, Figure 2b shows the trend that would have been 
obtained, should we have chosen to use Cressie’s method of superposing a low-resolution grid, 
assigning the data point values to the nearest grid node, and performing linear interpolation. 
Differences between the two methods are mainly obvious at co-ordinates where there are strong 
discontinuities in Cressie’s plating, and at sampled-domain extremities where Cressie’s method 
relies on linear extrapolation based only on two values. 
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global SE'ing lower upper class NE'ing lower upper class 

contrib. class # SE'ing SE'ing contrib. class # NE'ing NE'ing contrib. 
(E-01mm) (k) (km) (km) (E-01mm) (k) (km) (km) (E-01mm)

176.71 1 -121 -85 34.00 1 -112.00 -77.50 5.00 
 2 -85 -60 107.62 2 -77.50 -17.50 -5.00 
 3 -60 -40 177.00 3 -17.50 22.50 18.50 
 4 -40 -20 9.37 4 22.50 47.50 9.25 
 5 -20 -5 -6.00 5 47.50 90.00 -52.75 
 6 -5 10 -48.00 6 90.00 124.00 -15.00 
 7 10 30 0.00     
 8 30 50 -11.25     
 9 50 75 130.75     
 10 75 115 -32.25     
 11 115 151 -44.25     

Table 1. Two-way decomposition by means of the precipitation, following Southeast and 
Northeast directions. Lower and upper SE’ing and NE’ing indicate limits of intervals that divide 
the sampled domain following these directions. 

 
SE'ing lower upper «grid» class ββββk0 ββββk1 ββββk2 ββββk3 
class #  SE'ing SE'ing SE'ing contrib.     

(k) (km) (km) (km) (E-01mm)     
1 -121 -85 -100 34.00 67.5 -0.176 -.0221 -.000127 
2 -85 -60 -70 107.62 828 10.3 -.0911 -.00115 
3 -60 -40 -50 177.00 -1040 -39.1 -.183 .00239 
4 -40 -20 -30 9.37 138 16.9 .413 .000678 
5 -20 -5 -10 -6.00 -97.1 -5.51 -.0673 .00333 
6 -5 10 0 -48.00 -86.8 -1.43 .348 .00422 
7 10 30 20 .00 -152 11.1 -.181 -.00212 
8 30 50 40 -11.25 449 -25.4 .246 .00189 
9 50 75 60 130.75 -224 -22.0 .915 -.00749 
10 75 115 90 -32.25 1810 -34.0 .152 -.134E-05 
11 115 151 140 -44.25 -371 3.92 -.0127 .242E-07 

 

NE'ing lower upper «grid» class ββββk0 ββββk1 ββββk2 ββββk3 
class #  NE'ing NE'ing NE'ing contrib.     

(k) (km) (km) (km) (E-01mm)     
1 -112 -78 -110 5.00 -271 -7.49 -.0678 -.000207 
2 -78 -18 -45 -5.00 29.1 1.42 .0122 -.0000123 
3 -18 23 10 18.50 19.8 .366 -.0160 .0000551 
4 23 48 35 9.25 38.6 -2.09 .0910 -.00150 
5 48 90 60 -52.75 240 -6.42 .00565 .000340 
6 90 124 120 -15.00 -1140 25.2 -.185 .000452 

Table 2. Parameters used for modelling precipitation large-scale variation, following Southeast 
and Northeast directions, through 3rd-degree polynomial expressions. Lower and upper SE’ing 
and NE’ing indicate limits of intervals that divide the sampled domain following these directions. 
“Grid” SE’ing and NE’ing refer to the co-ordinates of grid rows and columns that would have 
led to the same division in Cressie’s method (all data points in each interval are closer to this co-
ordinate than to any other row or column co-ordinate). 
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Residual small-scale variation was calculated by subtracting the large-scale variation to the 
data. Plotting these residuals against N-S, W-E, NW-SE and WS-NE directions did not show any 
remaining clear large-scale variation. According to Cressie (1993), plotting the residuals against 
(xs - <x>)(ys - <y>) is a way to detect departures from additivity of the two main effects (the slope 
of the plot would be indicative of the significance of a hypothetical quadratic term). Such a plot did 
not show anything significant either. 
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a. Precipitation large-scale variation, modelled through 3rd-degree polynomials
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b. Precipitation large-scale variation, modelled through Cressie's method

 

Figure 2. Precipitation large-scale variation isolated through two-way analysis by means (global 
effect + NE’ing class effect + SE’ing class effect), modelled (a) using 3rd-degree polynomials and 
(b) using Cressie’s linear interpolation (for comparison). 

2.4. Discussion. 
The method may appear complex but this is mainly due to the number of parameters that 

renders the equations fairly long. Its application is in fact fairly straightforward, and very easily 
programmed (the only “complex” issue is the inversion of large matrices, but any basic 
geostatistical library will anyway be furnished with procedures aimed for this purpose). The main 
software that we used was Microsoft Excel 97. Only inversion of large matrices was performed 
outside this program, using one of the matrix-inversion FORTRAN procedures furnished with 
GSLib (Deutsch & Journel, 1992). There are few hypotheses behind the model, except of course 
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that large-scale variation can be decomposed into a global and two main directional effects 
(applicability of this hypothesis was verified through the last step of the decomposition analysis).  

However, we had to take two subjective decisions during the process of developing the 
method, concerning respectively the analytical expression selected to describe the large-scale 
variation within each interval, and the quantity minimised to obtain a determined system. Third-
degree polynomials were selected only to obtain easy-to-handle equations, allowing for the 
presence of extrema and/or an inflexion point within each interval. Anyway, we believe 
subjectivity is also present in Cressie’s method, though maybe less obvious because the equations 
are apparently more simple. With trend effects associated with grid rows or columns, each one of 
them is viewed as a point located on one of the axes. Even if a straight line is, at first glance, the 
most simple way to join two points, the decision to choose this way to describe variation between 
these points is still completely subjective. Furthermore, if we look at the trend effects as being 
associated to intervals, rather than grid rows or columns, Cressie's large-scale-variation model 
within each interval is, in fact, composed by two secant straight-line segments, which is equivalent 
in complexity to a 3rd-degree polynomial expression (the number of parameters is the same).  

Our decision to minimise the trend (squared) variation was largely dictated by the 
complexity of the large-scale variation and by the sparseness of the data points. Along the NW-SE 
direction at least, the trend is clearly far to be monotonous : even knowing its mean values within 
several contiguous intervals, one can hardly make any assumption about what could happen in the 
next interval. In such conditions, we preferred to model the trend behaviour by a smaller variation, 
rather than to make hypotheses about its continuity from the previous intervals. Influence of this 
choice is most obvious at the extremities of the analysed spatial domain, where the model 
behaviour is less influenced by mean effects in contiguous intervals, and therefore more influenced 
by the minimisation : our decision will invariably lead to a small trend slope at these extremities 
(which clearly differs from the linear extrapolation performed on the basis of the two outer rows or 
columns in Cressie’s method). There is no way to assess the value of this decision on a general 
basis and without knowledge of the large-scale variation behaviour outside the sampled domain. At 
least one of its merits is that, when working with a variable that is bounded in some way (like 
precipitation, that can not be negative), the risk to see the large-scale variation fall outside the 
theoretical range of values for the analysed variable is smaller. Under different circumstances, for 
example in presence of a monotonous trend or with a larger amount of data, it might make more 
sense to minimise the variation of the trend first derivative rather than the variation of the trend 
itself, which would produce a modelled surface closer to the surface defined by Cressie’s method. 

One final word may be written about extrapolation. Would it be necessary to extrapolate 
outside the limits of the sampled domain, our recommendation might be to continue the trend 
linearly, using the trend slope at the domain limit. However, it must be understood that the method 
is intended for interpolation, not for extrapolation.  

In the decomposition model, the trend is supposed to be deterministic; only the residual 
variation is analysed on a real statistical basis. In such models, it is very important for the trend 
values at any location to be estimated through the same process : even if a statistical procedure 
(kriging for example) might produce supposedly correct estimates of the small-scale variation 
outside the sampled domain, this small-scale variation would not be an estimate of residuals from 
an extrapolated large-scale variation. This remark, of course, is also valid for Cressie’s method, 
though not emphasised by this author. 
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3. GEOSTATISTICAL ANALYSIS OF PRECIPITATION RESIDUAL SMALL-
SCALE VARIATION. 

3.1. Structural analysis. 

3.1.1. Residual variance. 

Once the trend has been removed, the classical method is to treat residuals R (si) as a new, 
independent and stationary data set. However, here, we ran rapidly into problems. Figure 3 shows 
residuals plotted against trend values.  

y = 0.013x + 7.2412
R2 = 0.0003

-300

-200

-100

0

100

200

300

0 50 100 150 200 250 300 350 400

Precipitation large-scale variation (E-01mm)

R
es

id
ua

l p
re

ci
pi

ta
tio

n
(E

-0
1 

m
m

)

 
Figure 3. Residual precipitation plotted against precipitation large-scale variation isolated 
through two-way analysis by means. As shown by the regression line, the mean residual 
precipitation are not dependent on the large-scale variation. Residuals appear even to be fairly 
symmetrically distributed around their mean at all values of the large-scale variation. However, 
residual variance increases clearly with large-scale variation. 

We can see that mean residual precipitation is slightly positive and, indeed, does not 
depend on trend values. Residuals appear even to be remarkably symmetrically distributed for any 
trend value. However, and this is probably a common situation with data bounded to zero, the 
residual variance is dependent on the trend value. As a result, the cloud span clearly increases to 
the right of the plot, even though data density decreases. 

On the basis of (1) the absence of any detectable residual trend in any direction and (2) the 
apparent independence between residual mean and large-scale variation, we will assume that 
residuals have a perfectly stationary mean, and that only their variance varies. Under this 
assumption,  

22 ))(()( RRs ii −= ss  

is an element of the local residual variance at the location s, and we can recombine these elements 
to calculate residual variances or plot them against any explanatory factor, to build an expression 
that could be used to predict the residual variance at any location. Dependence between residual 
variance and precipitation trend is clearly confirmed by the plot shown in Figure 4.  
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y = 28.94x + 90.84
R2 = 0.09
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Figure 4. Precipitation residual variance elements plotted against precipitation large-scale 
variation isolated through two-way analysis by means. Residual variance elements tend to be 
proportional to the trend value (if the regression line is forced through the origin, equation 
becomes y = 29.36 x without significant loss in R²). 

Furthermore, the relation is very close to proportionality. One might, therefore, predict residual 
variance using the expression (µ (s) denotes the trend value in E-01mm) : 

)(36.29)(2 ss µσ =)  

 

One will notice, however, that proportionality is quite tempered at the highest values of the 
trend. In an attempt to find another explanatory factor, we calculated the trend gradient for each 
data point. Residual variance elements appeared to be positively correlated to this parameter as 
well, though this relation was much less clear (R² = 0.07). This result was to be expected for two 
reasons : first, we might expect the residuals to be more variable by themselves at locations where 
the precipitation are globally more variable; second, we can expect the trend fit to be less correct 
where its gradient is higher (a slight modification in the trend parameters would lead to a 
significant variation in the trend values that were subtracted to the data). Finding a global 
expression for residual variance is not straightforward, however, because (1) the two explanatory 
variables are significantly (though not strongly) positively correlated, and their respective effects 
are therefore “clouded” by each other, and (2) variation of variance elements increases with their 
mean, making classical linear regression procedures not really correct (more weight is 
systematically given to high-valued data). As proportionality to the trend value was the most clear 
influence, it was assumed that this was the main effect, and that influence of the trend gradient 
occurred only through a moderation or increase of the proportionality factor. Therefore, we plotted 
the ratio of variance element to the trend value, calculated for each point, against the trend 
gradient, and performed an ordinary least square regression. Thanks to the proportionality of the 
two terms of the ratio, this variable exhibits a relatively homoskedastic behaviour. This produced 
the following expression : 

)614.19))((484.20()(2 += sgrads µµσ)  

where µ (s) denotes the trend value (in E-01mm) and grad(µ (s)) its gradient (in mm/km). This 
expression explains 12% of the residual variance elements, which is already an achievement 
considering that fitting was performed on elements, that are highly variable quantities (when 
replacing µ (s) and grad(µ (s)) by their respective means, the same expression will predict 
respectively 97% of the variances calculated on classes of 20 data points with increasing trend 
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values, and 83% of the variances calculated on classes of 20 data points with increasing trend 
gradient). 

3.1.2. Stationarity assumptions. 

In the previous paragraph, we already made the assumption that residual mean was 
stationary. Under this assumption, we saw that precipitation residual variance, on the contrary, is 
obviously not stationary, but is strongly linked to the precipitation large-scale-variation structure. 
Therefore, classical stationary assumptions do not really make any sense. Indeed, define the 
residual variogram as : 

))+( ),((2−))+((+))((=))+(−)((=)( hsscovhsvarsvarhssvarh RRRRRRγ2  

Assuming R(s) still behave approximately like a regionalized variable, when h becomes large, the 
covariance term tends to zero and 2γ tends to the sum of the residual variances at locations s and (s 
+ h). If these residual variances are location-dependent, it is evident that 2γ can not depend only on 
h. At least, its sill will be a function of locations of both the head and tail of the vector h. It has 
been shown (see Cressie 1993, pp. 142-143) that kriging does not require variogram or covariance 
function to be stationary. In fact, as long as 2γ  estimates the statistical distance between the values 
taken by the variable at two locations si and sj (that is, as long as it is an estimate of the variance 
associated to the difference between these values), kriging equation system remains valid and will 
still produce an optimal unbiased linear predictor. However, except perhaps in some cases where a 
definite physical model might suggest a particular covariance function, some stationarity 
assumptions are always necessary to allow the variogram or covariance function to be estimated. 

To solve the current problem, we propose to define the following (pairwise) relative 
variogram : 
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with a theoretical sill of 1. The shape of 2γR(h) will be assumed to be the same everywhere in the 
sampled domain (only the variogram scale is supposed to be location-dependent). Similar 
assumptions, although not used to describe a variable continuity within a given spatial domain, 
have been made to build single relative variograms from data issued from separate sub-domains, 
that were assumed to show different variation scales (Isaaks & Srivastava 1989, Cressie 1993). The 
residual relative variogram will be assumed to depend only on h, while residual variance var(R(s)) 
will be supposed to be non-stationary, but dependent only on the large-scale variation structure 
(and, therefore, suitably predictable from this structure). 

These assumptions are in fact fairly similar to the more classical assumption of second-
order stationarity, except that the stationarity is here expressed in terms of relative covariance 
instead of covariance (that is, for any given lag h, covariance is supposed to reduce the global 
variability of the difference between two data points separated by this lag by a given percentage – 
we propose to refer to this assumption as "relative stationarity"). 

3.1.3. Variography. 

The most natural estimator of the above-defined relative variogram is an analogous of 
David’s pairwise relative variogram (1977), each squared difference in the classical Matheron’s 
variogram estimator (1962) being rescaled by the sum of the predicted local variances at the head 
and tail of the vector h : 
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where the sum is over all data pairs separated by vector h. Similarly, under the assumptions 
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defined in the previous paragraph, the continuity might also be described in terms of a relative 
autocovariance function : 
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where the sum is again over all data pairs separated by vector h. Still under these assumptions, 
definitions of these two parameters lead to the relation :  

)(21)(2 RR hh C−=γ  

which allows us to define 1 – 2 CR(h) as a “variogram form” of the covariance function. Empirical 
relative variogram and relative autocovariance were computed using these two formulae; results 
are shown in Figure 5.  
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Figure 5. Empirical relative variogram (2γR(h)), relative covariance in variogram form (1 – 2 
CR(h)) for the residuals, and Gaussian model adjusted to the covariance function in variogram 
form through Cressie's weighted least square method. Notice that both variogram estimators give 
similar results and that relative variogram indeed tends to 1. 

 
One should notice that both parameters give very similar results and that relative variogram indeed 
tends to a sill of 1 (which might not have been the case, if the stationarity in mean had not been 
satisfied or if the residual variance predictor had acted poorly). A Gaussian variogram model with 
a sill of 1 was adjusted to the relative covariance in variogram form, using Cressie’s weighted-
least-squares method (1993). Best fit was obtained for a nugget effect of zero and a range of 
15.5 km. 

3.2. Estimation of residual small-scale variation. 
The residual-precipitation small-scale variation was estimated for each unknown data point 

through kriging. In this exercise, we used a classical kriging system, except that variogram values 
characterising variation between each location pair were obtained from the relative variogram, 
rescaled by the sum of the residual variance predictors at these two locations. We did not reduce 
the kriging neighbourhood, and used all 100 available data for each point estimation. This 
produced estimates for residual precipitation small-scale variations, as well as kriging variances 
associated to these estimates. The kriging itself was performed using a modified version of one of 
the FORTRAN procedures furnished by GSLib (Deutsch & Journel, 1992). 
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3.3. Discussion. 
The use of relative variograms has been discussed to some extent by Isaaks & Srivastava 

(1989). Amongst other things, these authors proposed a case study of local-uncertainty assessment 
using a relative variogram, produced by rescaling the absolute variogram model in such a way that 
the sill equalled 1 (pp. 519 et seq.). They claim that error variances produced by kriging using this 
variogram are relative to the local variance : actual error variances associated to their estimates are 
then obtained by rescaling this variance with a local-variance estimate. 

In practice, this procedure is perfectly equivalent to a direct rescaling of the kriging error 
produced by using an absolute variogram, simply by multiplying it with the ratio of the local 
variance to the absolute-semivariogram sill, without even introducing the relative variogram 
concept. We do admit that, in case of non-stationary variances, this will provide apparently more 
reasonable uncertainty assessment (actual errors are more likely to be correlated to the rescaled 
variance). Unfortunately, we can not agree with the theory underlying this practice. 

Kriging produces best unbiased linear predictions thanks to a minimisation of the 
expectation of the prediction-error variance, which is performed here under the assumption that 
variance actually is stationary. To remove this assumption on the next step of the procedure is to 
accept that what was minimised in the first step actually was not representative of the error 
variance. Through the variogram, kriging equations take account of two sets of statistical distances, 
respectively between each data point and the estimation point, and between each data-point pair. If 
the first set of statistical distances may be thought to depend on the local variance at the prediction 
location, they can also be said to depend on the local variance at the data points. Statistical 
distances separating each data-point pair are, for them, not at all related to the local variance at the 
prediction location. Unless kriging is performed with a very restricted kriging neighbourhood 
within which the local variance may be assumed stationary, (1) the produced predictions will not 
be best linear predictions and (2) the produced error variance will not even be a correct estimate of 
the error variance associated to this prediction.  

The method we proposed here is quite different from the above-described uses of relative 
variograms, in the way that our relative variogram is rescaled, by local variances at the two 
concerned points, prior to perform kriging. We strongly believe that this, only, leads to a set of 
equations taking into account the statistical distances between each data-point pair. There is a price 
to pay, however : under the assumptions we adopted, it is very difficult to ensure positive-
definiteness of the model: rescaling the variogram theoretically destroy its positive-definiteness. 
This problem is difficult to avoid as the trend and, therefore, the residual variance, are largely 
experimental results. There would be two situations in which the model would be really positive-
definite : (1) if residual variance was stationnary and (2) if residual reduced variogram was a pure 
nugget effect. Neither of these situations seems to occur here. However, we do not believe that 
assuming that, practically, the model will behave as if it was positive definite is to take a great 
risk : (1) residual variance does vary, but smoothly and it is bounded to a limited interval and (2) 
residual auto-correlation is limited to a short range, as compared to the mean distance between data 
points. Any point farther than 15 km from a data point will behave as if the model was a pure 
nugget. Furthermore, the Gaussian model selected for variography is very smooth, which should 
ensure an efficient screen effect. 

4. ESTIMATION OF TOTAL PRECIPITATION. 
Summing residual estimates to the trend for each location yielded precipitation estimates. 

Associated 95%-confidence intervals were built under a local normality assumption (estimated 
value ± 1.96 kriging standard deviation). Contour maps of the estimates and their associated 
standard deviation are shown respectively on Figure 6 and 7. Figure 6 also shows the locations of 
the 10 smallest and 10 largest estimated values.  
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Figure 6. Contour map of estimated precipitation. The 10 largest and 10 smallest estimated values 
are also located on the map. 
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Figure 7. Contour map of kriging standard deviation associated to the estimation 
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5. METHOD PERFORMANCES. 

5.1. Global comparison of estimated precipitation values versus actual precipitation 
values. 

Figure 8 shows true precipitation values plotted against our estimates, and Figure 9 gives a 
comparison of distribution histograms of true and estimated values.  
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Figure 8. Actual precipitation values plotted against estimated values. The lines through the plot 
represent respectively y = x and a linear regression. The correlation is highly significant, the slope 
do not differ significantly from 1, nor does the intercept differ significantly from 0. 
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Figure 9. Distribution comparison of true precipitation values versus predicted values. 
Distribution shapes are quite similar, but one can easily notice the "smoothing" effect of the 
estimation procedure, yielding frequencies slightly higher in central classes and smaller in lower 
and upper classes than in reality. 
 

Table 3 summarises distribution parameters of true and estimated values, and gives several 
measures that can be used to assess performances of the method. Estimated values correlated very 
highly significantly with actual values (R² = 0.63), but there was a slight negative global bias 
(about 1mm, approximately 5% of the mean). One inconvenience of the method was conditional 
biasedness : it is a fairly known phenomenon that kriging acts like a "smoother", yielding estimates 
exhibiting a more narrow distribution than actual data values. In fact, this problem is shared by 
most interpolation methods. Extreme predictions are usually obtained only at location for which 
high weight is given to one or more extreme-valued data, and high weights normally are the 
expression of a fairly good level of certainty in the prediction. It is therefore relatively rare for 
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extreme predictions to be highly erroneous.  

 
 True Estimated  Performance Measures 
Minimum (E-01mm) 0.00 16.16 bias (E-01mm) -10.2 
Maximum(E-01mm) 517.00 435.38 MAE (E-01mm) 50.8 
Mean(E-01mm) 185.36 175.21 MRAE (%) 34.3 
Median(E-01mm) 162.00 153.62 MSE (E-02mm²) 4711.6 
Variance(E-02mm²) 12358.18 7278.51 RMSE (E-01mm) 68.6 
   R² 0.63 

Table 3. Distribution parameters for actual and estimated precipitation, and prediction 
performances (bias : mean error; MAE : Mean Absolute Error; MRAE : Mean Relative Absolute 
Error; MSE : Mean Squared Error; RMSE : Root Mean Squared Error; R² : determination 
coefficient). Estimated values have narrower distribution than actual ones. Precipitation mean and 
median were both underestimated by about 1mm. 
 

On the other hand, less precise predictions are usually closer to the mean (more similar 
weight is given to all data), but some of these predictions may still be representative of true 
extreme values. Therefore, when taking into account only prediction values, extreme data are less 
often predicted than they do occur in reality. This effect can easily be seen in Table 3, estimated 
precipitation values showing higher minimum value, lower maximum value and lower variance 
than the actual precipitation data. The main consequence is that actual largest values are often 
underestimated, while actual smallest values are more likely to be overestimated. A regression of 
precipitation errors against actual precipitation values yielded indeed a very highly significant 
negative slope of -0.39 (R² = 0.41; see Figure 10). 
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Figure 10. Conditional bias caused by the "smoothing" effect of kriging. Errors are obviously 
negatively correlated to the true precipitation values. 
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5.2. Comparison of assessed uncertainty versus actual errors. 
Actual error magnitude is clearly linked to kriging standard deviation, as shown by the 

scatterplot on Figure 11.  
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Figure 11. Scatterplot of actual absolute errors versus kriging standard deviation. The magnitude 
of actual errors clearly increases with increasing kriging standard deviation. 

 
Furthermore, relation is close to proportionality, with a proportionality factor not too far from 1 (a 
much stronger relationship between these two parameters is not to be expected (Isaaks & 
Srivastava, 1989)). This is already a very good point, and shows that kriging standard deviation 
may be used as an indicator of local uncertainty associated to our method. A histogram of 
standardised errors (divided by the kriging standard deviation) is shown on Figure 12, and Figure 
13 shows a map of raw errors, using proportional symbols.  
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Figure 12. Distribution histogram of standardised errors ((estimated value – true value) / kriging 
standard deviation). Notice that histogram is centred on a value that is close to zero (bias is 
small), and is relatively symmetrical, except for a few strongly negative values. 

 
The histogram is centred on a slightly negative value (mean : -0.19, median : -0.11), and 

roughly symmetrical. However, a handful of data are quite strongly underestimated (these data 
show on the left of the histogram as a small secondary mode, around -3.5). As a consequence, the 
standard deviation of standardised errors is 1.28, thus quite higher than the ideal value of 1. The 
proportion of true data falling outside the 95%-confidence intervals built under a normality 
hypothesis was 10.6% : respectively, 3.5% fall lower than the lower confidence limits 
(overestimation), and a well higher 7.1% fall higher than the upper limit (underestimation). 
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Figure 13. Map of precipitation-estimation errors (estimated value – true value). Symbol radius is 
proportional to the error. 

 
In fact, such results are partly to be expected. Remember large-scale variation was isolated 

from the data set. Should some "anomaly" occur, leading to a higher mean in an area without data 
to show it, there would be no way to isolate this variation : actual residuals in this area would not 
be stationary in mean (there would be an (undetectable) "pocket" of non-stationarity), and 
precipitation would likely be underestimated. But this would not be the only consequence... Local 
residual variance, as a function of local trend value, would be underestimated as well, producing an 
associated confidence interval too narrow. The opposite situation, with a lower local mean than 
expected, would lead to overestimate the precipitation. However, this would be accompanied by an 
overestimation of local residual variance, and confidence interval would therefore likely be too 
large, making error appear less significant. Structurally, our model leads therefore to higher risk to 
"significantly" underestimate data than to "significantly" overestimate them.  

It should be noticed that, strictly speaking, if we take the trend isolated and modelled in 
§2.3. as our definition of the large-scale variation (as Cressie does in his median-polish kriging 
(1993)), this trend itself will theoretically never be misleading. The only possible errors rely in the 
assumptions we make about the residual behaviour. Figure 14 shows locations of significant errors, 
with respect to a contour map of the predicted precipitation values.  

These locations are not random : they are mostly places where the model fit would be 
expected to be poorer. Such locations are of two types : (1) external areas, where neighbouring data 
are missing in some directions (definition of large scale variation along at least one of the main 
directions was not "helped" by the presence values from a contiguous interval, see discussion in 
§2.4.); (2) areas with average precipitation-trend values, but where large-scale variation is fairly 
quickly changing from high to low, and where slight changes in the parameters defining large-scale 
variation might lead to significant changes in the local trend value. 

There is not much to do about the first of these two location types, except to increase the 
size of the sampled domain, by adding data from neighbouring countries (or, at least, from stations 
as close as possible to the country border). Probably another residual variance predictor might be 
built, taking account of the sparseness of data used to isolate the trend in these areas, but this would 
have been difficult on the basis of the data set that was used here (too few data points are located in 
these areas). 
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The second type of error locations concerns mostly significant underestimation. In fact, we 
already tried to deal with this problem, by introducing the large-scale-variation gradient into the 
residual variance predictor (§3.1.1), but this correction appears to have been insufficient at several 
locations. These errors occur quite independently from the actual precipitation value. They are 
probably mainly due to undersampling (to increase the data-set size with only a few data in these 
areas would probably lead to a significantly different large-scale variation). 
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Figure 14. Map showing significant standardised errors ( (estimated value – true value) / kriging 
standard deviation, with absolute values higher than 1.96), with respect to a contour map of 
estimated precipitation (colour scale, not shown due to lack of space, is as on Figure 6). 
 

5.3. Prediction of smallest and largest precipitation values. 
Smallest and largest data are often the most difficult to predict, and this case was no 

exception. Only one of the ten smallest actual values was amongst the ten smallest predictions of 
our model. However, we strongly believe that, from the available data set, prediction of at least 8 
of these data point is (at best) very hazardous, due to their locations outside the sampled area (4 
points in the extreme East, 4 points in the extreme South of the country) : in fact, any better result 
would probably have to be qualified of luck if not based on meteorological considerations (that 
were not used here). Nevertheless, our ten lowest predictions fall in the same general areas than the 
ten smallest actual values. 

The method performances were quite better for the ten highest data, of which four are 
amongst the ten highest predictions. Furthermore, eight of these data fall within the 95%-
confidence intervals associated to their prediction under normality assumption. The two main 
highest-precipitation zones were correctly identified. 

6. APPLICABILITY OF THE METHOD AND CONCLUSIONS. 
The method that was presented in this paper is not highly computing consuming and could, 

at first glance, easily be automated. Its use in case of an emergency would therefore be quite easy. 
Its performances to predict precipitation values within the country (we mean : not to close from the 
country border and obviously outside the sampled area) appeared quite good. Furthermore, it gave 
a rapid and quite suitable estimation of the uncertainty associated to the predictions. Ability to 
predict the lowest values of the data set was fairly small, but this was mainly due to outlying 
locations of these data. Ability to predict the highest values was quite better. Anyway, the global 
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areas where highest and lowest precipitations occurred were correctly identified. 
 
We would like to end with some remarks about the selection of a given method to be used 

in case of emergency. 

To be valid on a general basis, choice of a method should be based on comparisons dealing 
with more than one data set. Precipitation data from different days are likely to behave differently. 
By the way, a directional two-way mean decomposition might produce less stationary residuals 
with another data set. 

Performances of a method applied to a partial data set are likely to be different from 
performances of the same method with a larger data set. By taking a sample of the data set, the 
problem scale is changed, and the boundary between large- and small-scale variation will be 
modified too. To compare efficiently methods, it would be much more advisable (but without 
doubt also more difficult) to apply the method with the data density with which it is intended to be 
routinely used, and to increase the data density to test the method performances on the basis of the 
additional data. In the current case, an optimal sample size could be determined by increasing the 
sample size up to the moment when adding new data does not modify significantly the large-scale 
variation structure any more. Again, this should ideally be performed on several data sets from 
various days, under various meteorological conditions, and results should to be compared. 

On a general basis, interpolation should never be generalised to extrapolation without 
extreme caution (especially if dealing with any kind of data decomposition). From this point of 
view, it would be highly preferable, for any country, to obtain data from the closest parts of 
neighbouring countries, or at least to have as many data as possible from locations within the 
country, but next to its borders. In the current example, the extreme East of the country was not 
represented by any data in the interpolated set. On the basis of observed large-scale-variation 
gradient in several other parts of the couture, the highest precipitation values might very well have 
been there... and would have been absolutely impossible to predict. 

Lastly, we would like to notice that extracting the 10 highest predicted values from an 
interpolation exercise, which usually produces predictions with highly variable associated 
uncertainty, is not the safest way to decide where to apply radioactivity monitoring in case of 
nuclear incident... This might be a quite hazardous method for people living in areas where 
prediction was less extreme with higher uncertainty. 
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Abstract: This paper uses the geostatistical methods of ordinary kriging (OK) and indicator
kriging (IK) to address the problem of estimating values of precipitation at locations from which
measurements have not been taken. Several problems or issues were raised including: (i)
lognormality of the data, (ii) non-stationarity of the data and (iii) anisotropy of the spatial
continuity. Given that the aim of SIC’97 was to compare a variety of different approaches to
estimation. IK (informed using directional indicator variogram models) was selected because it is a
means to account for lognormality and it was a method that was unlikely to be used widely within
the competition. Accuracy of estimates made using IK were compared with OK estimates. It was
observed that the OK algorithm, as implemented here, provided more accurate estimates than IK.
This was considered to be due, at least in part, to the method used for tail extrapolation and also the
small number of data used in estimation (100 data locations). OK was recommended over IK in
this instance as OK provided more accurate estimates and was also more easy to implement.

Keywords: Indicator kriging, ordinary kriging, precipitation.

1. INTRODUCTION
We find ... there is not a single rule, however plausible, and however firmly grounded ... that is not
violated at some time or another

                                                                      (Feyerabend, 1975, p. 23)

As a subject such as spatial interpolation reaches maturity it can often be difficult to
condense the broad knowledge and experience of many practitioners into a single volume so that
novice practitioners can make reasoned judgements about the steps which they should employ. We
hope that SIC’97 will provide some insights into the multi-dimensional decisions (often based on
judgement) which must be made when embarking on a spatial interpolation problem, specifically
by allowing comparisons between different techniques, approaches, decisions and so on. It is with
the above knowledge in mind that we are happy to report our method and in doing so reveal our
errors.

At first we chose ordinary kriging (OK) as a standard technique for spatial interpolation.
The results obtained from OK are described below in section 3. We felt reasonably confident about
this technique and, therefore, the results produced. However, with the spirit of the competition in
mind we wished to select a technique for spatial interpolation which might be less commonly
employed by other contributors. Thus, although we were less confident about the results, we based
our spatial interpolation on indicator kriging (IK, section 4). In section 2 below we describe the
rationale for choosing the IK approach.
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2. INITIAL DATA EXPLORATION
Our initial exploration of the data revealed five main issues which we wished to address in

our choice of technique for spatial interpolation.

2.1 Lognormality of the data
It was quite obvious from the start that the 100 sample data were approximately

lognormally distributed (Figure 1). Ordinary kriging is quite robust and so there is some potential
for applying OK without modification even when the data do not have a normal distribution.
However, there are several alternatives. The most commonly employed is to transform the data to a
normal distribution, undertake OK, and then apply a back transform (not the anti-log). This
approach has several disadvantages, the main one being that the back-transform can introduce
uncertainty to some values.

An alternative approach, and the one which we adopted, is IK. Since IK works by
decomposing the variable of interest into several binary variables, and in so doing decomposing the
univariate distribution function (histogram) into several classes, the dependence on a normal
distribution disappears (Journel, 1984). It is mainly for this reason that we decided to adopt IK.

Figure 1. Histogram of the 100 sample data. Units are given in tenths of millimetres.

2.2 Non-stationarity of the data
The maps produced initially using straightforward techniques such as inverse distance

weighting squared interpolation indicated that there may be some justification to adopting a non-
stationary model of the spatial variation in precipitation. Of course, whether a variable is modelled
as stationary or otherwise depends among other things on the scale of the analysis and the choice
of the investigator. The justification for our choice was that the variation appeared relatively
smooth (indicating that a deterministic model may be appropriate).

We tried to fit several three-dimensional polynomials of order up to and including three,
but none provided a satisfactory fit. A higher order polynomial may well have provided a better fit.
However, we felt that the need for such high order polynomials indicated that a stationary model
may well be appropriate despite the fact that the variation was apparently smooth. We also
considered segmenting the region into two or more areas of like variation (mean values within a
neighbourhood). However, with only 100 sample observations in total, segmentation would reduce
these numbers further and make the characterisation of spatial variation necessary for kriging
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unreliable. For the above reasons we adopted a stationary model.

2.3 Anisotropy of the spatial continuity
As with all standard mapping applications of the kriging family of algorithms it was

necessary to check for anisotropy. An initial simple structural analysis revealed the directions of
maximum and minimum variation (geometric anisotropy) to be 45° and 135° approximately.
Therefore, it was necessary to model this anisotropy and include the model in any technique
chosen for spatial interpolation.

2.4 Lack of correlation with the elevation data
Since the original 100 sample data were supplied with a coregistered digital elevation

model (DEM) of Switzerland we considered using regression type statistical techniques such as
simple regression, cokriging and artificial neural networks. However, despite our efforts we did not
find any satisfactory relation between precipitation and elevation.

Given that the spatial distribution of precipitation is likely to have been driven by wind
orientation and relief (with rain occurring most on the windward side of slopes and least on the
leeward side) we decided to estimate slope aspect as a potential covariate from the elevation data.
However, there was little observable relation which persisted across the whole region. The
assessment of correlation between variables in this manner is problematical but although the
relationship may have been non-linear no obvious association of any kind was observed. The
principal problem may be related to scale. For example, Daly et al. (1994) observed large positive
correlations between elevation and precipitation for the Willamette River basin in Oregon, but not
for the western United States as a whole. Even when we smoothed the elevation and aspect maps to
attempt to match the scale of the processes which result in precipitation, little relation was
observed. There did appear to be two different relations, one for elevated areas and one for low-
lying areas, but modelling them separately would have meant segmenting the region. Given the
small number of sample data we decided against this.

2.5 Preferential clustering of the data
Depending on the technique used for spatial interpolation it may sometimes be necessary

to decluster the data where they are preferentially located in areas of large or small values. Since
this is necessary for IK, we chose to decluster the data (decreasing the mean from 180.15 to
173.78), using the routine declus GSLIB (Deutsch and Journel, 1992), to estimate the form of the
histogram prior to applying the IK algorithm (Figure 2).

Figure 2. Histogram of the 100 declustered data. Units are given in tenths of millimetres.
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3. ORDINARY KRIGING
Ordinary kriging has been described as the ‘anchor algorithm of geostatistics’ (Deutsch

and Journel, 1992, p. 64) because of its remarkable robustness under a range of conditions. On
account of this robustness we decided to apply OK in the first instance to map precipitation in
Switzerland at the 367 locations for which values were held back.

Directional variograms were estimated from the sample data and the directions of
maximum and minimum variation (geometric anisotropy) were estimated as 45° and 135°
approximately. Sample variograms were estimated for these directions and these were fitted with a
Gaussian plus spherical model using the weighted least squares functionality of the GSTAT
software (Pebesma and Wesseling, 1998). The coefficients were subsequently modified by eye
(Figure 3 and 4).
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Figure 3. Sample variogram for 45° (+ symbols) with fitted model (solid curve).
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The above variogram models were used in OK (using the GSTAT software) to map precipitation at
the unobserved 367 locations and the remainder of the study area. We chose a search radius of 45
km, and minimum and maximum numbers of data to use in kriging of 1 and 16. The isolines for
the kriged estimates are shown in Figure 5. Figure 6 maps the errors from the OK estimates. There
is no clear pattern of under or over estimation suggesting that even if a trend model had been used
it would probably not have increased significantly the accuracy of OK.

Figure 5. Isolines of OK estimates, with a 10 mm interval. The squares and circles show the
locations of the ten maximum and ten minimum estimates respectively.

Figure 6. Map of OK errors. The + and – symbols show the locations of over and under estimation
respectively.
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4. INDICATOR KRIGING
Despite our relative confidence in the OK algorithm we decided to apply IK for the reasons

given in section 2.

First, we declustered the data to obtain a slightly modified histogram as described in
section 2.5 (Figure 2). This distribution was divided subsequently with nine cut-offs, (that is, we
chose cut-offs based on the nine deciles of the distribution) and these cut-offs were applied to the
sample data to estimate indicator variograms using the GSLIB software (Deutsch and Journel,
1992). In retrospect, we feel that we were expecting too much of the data by dividing the
distribution into so many classes because there were only 100 observed values in the sample.
Nevertheless, the variograms obtained appeared to be fairly well behaved, exhibiting the kind of
variation for each cut-off that we might expect.

As for OK we wished to model the obvious anisotropy in the variable of interest. We
adhered to the orientations of maximum and minimum variation found for OK to keep the analysis
simple. The directional variograms for each of the nine deciles of the histogram are shown in
Figures 7 and 8. These variograms were fitted with a variety of models (shown in the figures), the
coefficients of which are given in Table 1. The means of the two sills for each cut-off were
obtained and the anisotropy was modelled as geometric.

Figure 7. Sample indicator variograms for 45° (+ symbols) with fitted models (solid curves).
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Figure 8. Sample indicator variograms for 135° (+ symbols) with fitted models (solid curves).

45° 135°
a1 Model c1 a1 Model c1

0.070 Sph 26750.8 0.100 Sph 69551.3
0.154 Sph 40729.9 0.210 Sph 64587
0.187 Sph 44882.1 0.260 Sph 64502.1
0.192 Sph 29430.5 0.285 Sph 46560.9
0.167 Sph 22196.2 0.341 Sph 62393.2
0.160 Sph 37392.1 0.314 Sph 62756.2
0.155 Sph 102875 0.239 Sph 53176
0.120 Sph 68383.5 0.140 Sph 32996
0.075 Sph 48854 0.100 Sph 26250.6

Table 1. Indicator variogram model coefficients for 45° and 135°.

The IK algorithm provided in GSLIB was used with some minor modification to estimate the
values at the 367 unobserved locations from the 100 sample data. We chose a search radius of 45
km and minimum and maximum numbers of data to use in kriging of 1 and 16 for each decile. In
the absence of prior knowledge we chose the linear method of estimating the tails of the
distribution, although these choices may have been sub-optimal (see for example, Goovaerts,
1997). The isolines for the IK estimates are shown in Figure 9.
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Figure 9. Isolines of IK estimates, with a 10 mm interval. The squares and circles show the
locations of the ten maximum and ten minimum estimates respectively.

5. ASSESSING THE ESTIMATES
Five summary statistics are given in Table 2 for both the observed values, the OK

estimates and the IK estimates. Clearly, IK has underestimated the maximum values and
overestimated the minimum values as one would expect of a weighted averaging technique (see
also the standard deviation). That IK has larger errors than OK is to some extent disappointing
given the extra effort required for IK, but is likely to be due to having to extrapolate to estimate the
tails of the histogram and to the small number of data available. Also, the use of linear
extrapolation for estimating the tails may have been a sub-optimal approach. The maximum OK
estimate is closer to the observed maximum but the fact that OK has produced negative estimates is
an obvious problem.

Minimum Maximum Mean Median Std. dev.
Observed values 0 517 185.359 162.000 111.015

OK estimates –27.92 510.67 181.87 154.387 107.15
IK estimates 29.549 489.625 186.911 162.485 100.707

Table 2. Summary statistics for 367 data. All values are given in tenths of millimetres.

The histogram of the IK errors was approximately normally distributed and the mean, 0.155 mm,
was closer to zero than that for OK (–0.349 mm) (Figure 10 and Table 3). The proportion of large
errors was greater for IK (hence the larger standard deviation of the error distribution for IK (6
mm) compared to OK (5.96 mm)).
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Figure 10. Histogram of the IK errors. Units are given in tenths of millimetres.

Minimum Maximum Mean Median Std. dev.
Observed–OK –263.54 349.08 –3.49 0.688 59.69
Observed–IK –288.82 287.02 1.552 4.591 60.04

Table 3. Summary statistics for the observed values minus the OK and IK estimates. All values are
given in tenths of millimetres.

The root mean square error (RMSE) for estimates made using IK was 6 mm whereas for
OK it was 5.97 mm. Though the difference was not great the OK errors were clearly smaller as a
whole than those for IK.

That OK achieved estimates closer to the observed values than IK is again illustrated by
the mean absolute error (MAE). For IK the MAE was 4.26 mm whereas for OK it was 4.1 mm.
Dividing the absolute errors by the observed values gives the mean relative error (MRE). For IK
the MRE was 0.051 whereas for OK it was 0.034. The MRE was calculated after the removal of
the five observed values of zero to avoid contributions of infinity to the sum.

Technique Minimum 10
estimated

Minimum 10
honoured

Maximum 10
Estimated

Maximum 10
Honoured

OK 6 1 2 3
IK 3 1 3 3

Table 4. Number of locations of the 10 minimum and maximum actual values that are also among
the locations of the estimated 10 minimum and maximum values. Kriging honours values in the
sample of 100 observations and these are tabulated separately.
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Observed OK IK Observed OK IK
0.00 54.84 83.24 426 301.13 285.36
0.00 37.79 45.42 429 239.78 226.09
0.00 33.37 38.86 432 489.52 442.97
0.00 –4.52 122.89 434 399.46 453.90
0.00 –6.23 74.44 434 328.99 331.55
1.00 –5.78 42.27 444 408.13 462.27
5.00 –19.65 67.01 445 375.84 433.77
6.00 –25.94 70.25 493 460.87 397.74
8.00 –27.92 70.87 503 268.28 267.33
13.00 32.67 72.35 517 253.46 228.18

Table 5. The ten largest and smallest values and their IK estimates. All values are given in tenths
of millimetres.

The errors of the IK estimates are plotted against the observed values in Figure 11. The r for IK
was 0.433 whereas for OK it was 0.333. While the correlation coefficient indicates little correlation
Figure 11 illustrates a tendency for the IK errors to decrease with an increase in the observed
values.

Figure 11. The IK errors plotted against the observed values. Units are given in tenths of
millimetres.

The scatterplot of the observed values against the IK estimates is given in Figure 12. The r for IK
is 0.842 whereas the value for OK is 0.85.
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Figure 12. The observed values plotted against the IK estimates. Units are given in tenths of
millimetres.

Isolines of the IK estimates are given in Figure 9. The distribution of the highest and
lowest estimates are notably different for OK (Figure 5) and IK (Figure 9). The maximum positive
and negative errors are given in Table 6. The errors for both OK and IK are large and indicate that
neither technique can be considered to have estimated accurately locally.

ID OK negative
errors

ID OK
positive
errors

ID IK
negative

errors

ID IK
positive
errors

150 –263.54 63 349.08 150 –288.82 63 287.02
437 –234.99 70 221.47 350 –235.67 70 179.01
350 –234.72 58 175.99 437 –226.73 44 166.63
171 –189.22 327 148.07 171 –202.91 327 164.22
438 –151.85 88 147.05 114 –155.05 58 153.56
385 –146.07 47 136.62 184 –148.21 306 133.27
38 –144.72 44 134.10 189 –140.64 175 132.04
361 –141.33 445 114.40 438 –138.25 367 122.89
184 –134.39 288 106.14 41 –136.23 98 122.62
189 –124.87 76 103.67 161 –123.11 288 117.55

Table 6. The ten maximum negative and positive errors using IK. Errors are given in tenths of
millimetres.

Figure 13 shows the map of the IK errors. As for the map of OK errors (Figure 6) there is
no clear pattern of over or under estimation across the region. This suggests that, whilst far from
ideal, a stationary model was acceptable in this situation.
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Figure 13. Map of IK errors. The + and – symbols show the locations of over and under estimation
respectively.

6. SUMMARY
The summary statistics presented consistently indicated that the simpler OK algorithm

performed more accurately than IK. For mapping in an emergency we would recommend OK
because it is relatively quick to implement and in any case was more accurate. However, it is clear
that neither OK nor the primary technique used, IK, could be considered accurate estimators of
precipitation. It has been noted with respect to IK that this is probably partly due to over-optimistic
use of IK with a small data set. Additionally, the use of other methods for tail extrapolation may
have improved the estimates. However, we anticipate that any conventional geostatistical approach
would be likely to produce similar results.
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Abstract: A new method is proposed for the classification of data in a spatial context, based on
the minimization of a variance-like criterion taking into account the spatial correlation structure of
the data. Kriging equations satisfying classification bias conditions are then derived for
interpolating the rainfall data while taking into account the classification.
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1. INTRODUCTION

1.1. Exploratory Data Analysis
In this subsection it will be argued that the data need to be separated into two groups,

corresponding to low and high rainfall values. Let us consider a cutoff value of 215 (here, and in
the rest of the paper, units are always 0.1 mm). This value seems for the moment somewhat
arbitrary, but it will be justified later, in section 2. Table 1 shows elementary statistics for these two
groups as well as for the complete data set. The group of the higher values contains only 31 data
and its mean is three times the mean of the group of lower values. The coefficient of variation is
decreased in both groups. It should also be noted that if the overall correlation between elevation
and rain is low (-0.2), it is increased in absolute value in both groups, reaching -0.4 in the group of
higher value.

N µ σ µ σ/ ( )ρ Z H,

Z < 215 69 113.1 48.5 0.43 -0.3

Z > 215 31 329.4 78.7 0.22 -0.4

All Data 100 180.2 116.7 0.65 -0.2

Table 2. Elementary statistics for the two groups and for the complete data set.

A graphical exploration of the data corresponding to this cutoff is depicted in Figure 1. The
histogram (Figure 1a) looks bimodal, which by itself is an indication that the data can be separated
into two groups with different probability densities. The cutoff is visible in the 5th bin and is
located towards the lower values of the intuitive limit between the two modes. This will be
explained in section 2.3.

On the map (Figure 1b), high values are organized along what seems to be two fronts
oriented SW-NE. Between and around these two fronts, rainfall is low, specially in the SW-NE
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corridor separating them. The convex hulls of the two groups are also shown on the base map (in
dashed lines). In the SE group, the convex hull contains no low values (i.e. below the cutoff 215),
and only three of them (79, 107, 194) are present in the NW group. This shows how convex and
concentrated these groups are. Interestingly enough, the variograms (isotropic variograms, with a
6.4 km lag and a lag tolerance of 3.2 km) computed within each group and normalized by the
corresponding variances can easily be superimposed (Figure 1c) and modeled using a unique
isotropic correlation function:

ρ(⋅) = 0.53sph(⋅,17 km) + 0.47sph(⋅,100 km),
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Figure 15. Exploration of the data: a) Histogram of the rainfall, with the cutoff indicated (215); in
black, part of the histogram below the cutoff; in gray, part of the histogram above the cutoff. b)
Map of the data, with the convex hulls (dashed lines) of the class of higher values. Two data (218
and 220) are highlighted with a ‘ × ’ sign. c) Experimental variograms of the two groups
normalized by their variances and the theoretical model (solid line). d) Scatter plot and regression
of rainfall vs. elevation for the two groups, with the regression lines (dashed lines).

where sph(  ,a)⋅  is the spherical correlation function: sph(h,a) =  - /  (|h|/a) + /  (|h|/a)1 3 2 1 2 3 .
This will be of great interest in section 2, when the classification algorithm will be presented.

On figure 1d is depicted the relation between rain and elevation (given by the closest
elevation on the grid of the digital elevation model provided with the rain data). As already
mentioned, the overall correlation (-0.2) is increased in absolute value in each group. It remains
however rather weak: -0.3 on the group of lower values (69 data) and -0.4 on the group of higher
values (31 data). These values are not significant for independent data at the 95 % confidence
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level, hence they are not significant for dependent data. Moreover, real elevations are not known,
but rather the elevation at the closest grid point. The error can be important for high elevations and
in the mountains. The regression lines are also depicted, and the slope is almost negligible (-0.025
10th mm/m) for the group of lower values. For all these reasons, it was decided to not include
elevation data in the geostatistical prediction model.

In summary, it seems that there is a case for separating the data into two groups, one
corresponding to the higher values (probably rain fronts), and one for the rest of the country. The
rest of the paper is organized as follows: the next subsection is a short review of classification
methods in a spatial context. Then, section 2 addresses the question of estimating the cutoff
separating the data into two groups. In section 3, kriging equations in the case of several groups are
developed, the so called Class Kriging and Probability Class Kriging. In section 4, the interpolated
data are compared to the real data, and the method is discussed.

1.2. Classification procedures: a short review
There is a substantial literature about classification, and only a partial review will be

attempted here. There are two main approaches of this problem: a parametric approach, usually
based on the gaussian model, and a non-parametric approach based on the minimization of a
variance-like criterion.

Celeux and Govaert (1992, 1995) and Banfield and Raftery (1993), among others,
extensively studied model-based clustering, possibly in presence of noise. The model is a mixture
of multivariate gaussian random variables with independent data and  the classification procedure
is based on a Maximum Likelihood argument using either the EM algorithm (Dempster et al.,
1977) after choosing a parametrization of the model in terms of decomposition of the covariance
matrices in terms of eigenvalues and eigenvectors, or a Markov Chain Monte-Carlo method in a
Bayesian framework (Richardson and Green, 1997). Discriminant analysis (Venables and Ripley,
1994) can be seen as one of the simplest special case of this approach.

The non parametric approaches are probably the oldest. In the case of several classes, the
variance can always be decomposed as the sum of a within-class variance and a between-classes
variance. Non parametric methods aim at minimizing the within-class variance, hence maximizing
the contrast between classes. This is basically the idea of hierarchical clustering, (Venables and
Ripley, 1994). Breiman et al. (1984) proposed a general method, called Classification And
Regression Trees (CART), for the classification of multivariate data. It is based on the
minimization of a deviance criterion, related to (but different from) the within-classes variance.
Again, these methods always consider independent data.

In fact, only few authors studied classification of spatial data. Switzer et al. (1982) gave an
algorithm for smoothing discriminant analysis classification maps using a prior probability method.
Oliver and Webster (1989) proposed a method for clustering multivariate non-lattice data. They
proposed to modify the dissimilarity matrix of the data by multiplying it by a variogram. Although
this approach leads to a sensible algorithm and to well-behaved maps, the statistical model behind
the method is not at all clear. More recently, Ambroise et al. (1997) proposed an interesting
classification algorithm for Markov random fields on lattices, able to take into account spatial
dependence. It is based on a Gibbs model and the procedure is an EM algorithm. They give
interesting references to earlier work on spatial classification. This work has been extended by the
same authors (private communication) to non lattice data using a neighborhood defined by the
Delaunay Graph of the data (i.e. the nearest-neighbor graph based on the Voronoï tessellation).

In this paper, a new classification procedure based on a gaussian geostatistical model is
proposed. It can be seen as an extension of model-based clustering to the spatial case.
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2. CLASSIFICATION

2.1. The model

Let first consider a sample of size n , t
nxZxZ ))(,),(( 1 �=Z , of a gaussian stationary

random function having mean µ , variance 2σ  and correlation function ( )⋅ρ . Then, it is a well
known result that provided ρ  is known, the Maximum Likelihood Estimators for µ  and 2σ  are 
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where ( )t1,,1�=1  is the vector of ones of length n and R  is the correlation matrix given by
( )jiij xx −= ρR . These equations can be rewritten in a much more concise way by defining
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for two vectors X  and Y of length n .Then,
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n
. ( 3 )

Remarks:

1/ �µ  is nothing but the kriging of the mean, see Wackernagel (1995). Its variance is 1R1 12 / −tσ .

2/ If there is no spatial correlation (case of a pure nugget effect), then IR = , the identity matrix,
and all the equations above simplify themselves. In this case ntt ==− 111R1 1 , �µ  is the arithmetic
average and 22 ˆ/ˆ µσ −= ntZZ  is the usual variance. Equations (3) have clearly the structure of an
expectation and a variance. Indeed, the scalar product (2) can be seen as a natural extension of the
usual operator nYX

n

i ii /),(
1� =

=YXA  to the spatial statistics context.

2.2. A classification algorithm
Let now consider that the data can be separated into a partition {K1, K2} with n1 and n2

elements respectively (n1 + n2 = n). Provided that the correlation function is known, means and
variances can be calculated according to equations (3) on this partition. The total variation of this
partition is defined by 2

22
2

11 ˆˆ σσ nnV += . If the partition is made of two homogeneous groups, the
variance in each class will be low, and as a consequence, the total variation will be low as well.
The ‘best’ classification of the data is then defined as the partition minimizing the criterion

( ) ( )V n n t t= + = − + −− −
1 1

2
2 2

2
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1
1 1 1

2

2
1

2 2 2

2
� � , , , ,σ σ 1 R 1 Z Z Z 1 1 R 1 Z Z Z 1 ,     ( 4 )

where Zi is the vector of data and iR is the correlation matrix in group i , 2,1=i .

If there is no spatial correlation, this criterion is equivalent to the minimization of the
deviance, as introduced by Breiman et al. (1984) for the Classification And Regression Tree
(CART) method. In this case, the partition minimizing (4) is necessarily reached for one of the n
cutoffs separating the data in the sets L of data lower than or equal to the cutoff and H of data
larger than the cutoff. Because of the spatial correlation, the optimal partition according to (4) is
not necessarily defined by a cutoff, but should rather be found within the set of the 2n possible
partitions. For a large data set (n ≥ 20, say) a comprehensive search is not possible. A paper in
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preparation proposes a solution to this problem using an iterative method. Since this is not the
scope of this paper, this problem will not be addressed here. In this paper, it will be assumed that a
reasonable description is achieved for two groups defined by one of the cutoffs. The algorithm for
finding the cutoff kc  minimizing (4) is then the following:

• Sort the data, and let Z Z n( ) ( )1 ≤ ≤, ,� be the order statistics.

• For each k , 1 ≤ ≤k n :

 – Define { }L Z x Z x Zk i i k= ≤( ): ( ) ( )  and { }H Z x Z x Zk i i k= >( ): ( ) ( ) ;

 – Compute �µl , �µh , �σl
2 , �σh

2  and Vk  according to equations (3);

• Find kc  such that Vkc
is minimum. The classification is given by the partition { }L Hk k, .

2.3. Classification of the data
The algorithm was applied using the correlation function fitted on Figure 1d. The result is

depicted on Figure 2 (‘∗ ’ signs). The minimum of is reached for kc = 69. On the same picture is
shown the total variance criterion ignoring the spatial correlation ( o ). In this case, the optimal
cutoff is k0 = 71. For comparison purposes, Table 2 shows the elementary statistics for three cases:
using cutoff k0, using cutoff kc and computing the means and variances ignoring and then taking
into account the spatial structure.

cutoff nl nh �µl �µh �σl �σh

(1) 225 71 29 116.0 337.1 51.0 75.6

(2) 215 69 31 113.1 329.5 48.5 78.7

(3) 215 69 31 113.4 323.3 50.7 83.9

Note: (1) non spatial cutoff; (2) spatial cutoff, non spatial statistics; (3) spatial cutoff, spatial statistics.

Table 3. Elementary statistics for two classification methods and for two estimators

In the case of the spatial classification algorithm, the group of higher values has two more
data than in the case of the usual CART algorithm. These two data (Z = 218 and Z = 220) are
highlighted on Figure 1 with a ‘ × ’ instead of a ‘ + ’. These two extra points increase substantially
the continuity and the convexity of the SE front. This is precisely the reason why a classification
algorithm taking into account the spatial correlation should be preferred. As a consequence
however, the cutoff is slightly shifted (here towards the lower values) from the visual point of
bimodality (on the histogram, the eye ignores spatial correlation).

A second interesting feature of the method is in the estimation of the mean and variance. In
the second line, means and variances are computed using the usual formulas, whereas equations (3)
were used in the third line. If the mean is not much affected, the variance is substantially increased
(+13%) for the group of higher values. This is a well known result among geostatisticians, and it
can be illustrated using a very simple example. Let Z1 and Z2 be two data. Without correlation, the
estimator of the variance is ( ) 4/ˆ 2

21
2
0 ZZ −=σ . In presence of a correlation ρ , the estimate is

)1(/ˆˆ 2
0

2 ρσσ ρ −= .
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3. INTERPOLATION
The aim is to build a predictor which is able to account for the separation of the data into

two classes. Therefore, we need three things: first, a general model for deriving the interpolation
equations; second, an algorithm for deciding which class the point to interpolate belongs to, and
third, an interpolation procedure once this information is known. In the following sections is
developed a kriging approach able to integrate the class information.

3.1. The model
According to the classification procedure described above, the model is the following:

consider a random field ( )Y x  with mean 0 and correlation function ( )ρ ⋅ . The random field ( )Z x
describing the rain is then obtained in each class by multiplication and addition of the
corresponding standard deviation and mean: ( ) ( ) ( )xYxZ ii

i σµ +=  (the superscript recalls the class
at point x ). Section 2 has shown how to estimate µi  and σi . The next subsection shows how to
interpolate Z at point x0  if its class is known.

3.2. Class Kriging

Let suppose for the moment that the class at point x0  is known, and let denote i0  this class
( { }i I l h0 ∈ = , ). The following linear interpolator is defined:

( )�Z Z Zi i

L

i

H

0 0 0= +
∈ ∈
� �λ λα α
α

γ γ
γ

,
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where L  (resp. H ) is the set of lower (resp. higher) observed values. The non bias condition
( )[ ]E Z i

i
� 0

0
= µ  leads to the following conditions:

( ) ( )λ δ λ δα
α

α γ
γ
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i
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0

0

0

0
∈ ∈
� �= =and ( 5 )

whereδij  is the delta of Kronecker: jiij ≠=  if 0δ  and jiij ==  if 1δ . The usual argument of
minimizing the variance of error using the Lagrange multipliers µ  and ν  leads to the following
equations, referred to as the Class Kriging equations:
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where α , β  and γ ,ε  are indices in L and H, respectively. Accordingly, [ ]R αβ  denotes the

n nl l×  correlation matrix of points in L, [ ]αγR  the n nl h×  correlation matrix between the points of
L  and H, and so on. 0αR  and 0γR  are the correlation vectors between the point x0  and the sets of
points L and H, respectively, and the 0 ’s are vectors of zeros of correct length. In practice,
estimators of the variance will replace the true values. It is also necessary to know the value of the
class i0 , which can only be estimated. This is the subject of the next subsection.

3.3. Estimating the class
The first and maybe the most intuitive way of estimating the class at a new point is the

nearest-neighbor approach: the estimated class at a new point x0  is the class of the nearest data
point. This is equivalent to estimating the limits of the fronts using Voronoï polygons. The final
estimator is then ( ) )(ˆ)(ˆ xZxZ i=  where i  is the class of the nearest data point of x0 .

A second approach is possible. Instead of estimating the class, only the probability of
belonging to each class is estimated. This is done by kriging the indicator function of the set H.
The variogram of its indicator function has a strong elliptic anisotropy in the 20° NE direction. An
exponential structure with the following parameters is fitted: 300 km practical range in the 20° NE
direction, 100 km practical range in the 70°NW direction; and a sill equal to 0.33. The kriging of
the indicator function, denoted p*, can be seen as the (best linear) estimation of the probability of
belonging to H. According to the equality ( ) ( ) )()(ˆ)()(ˆ)(ˆ HxPxZLxPxZxZ hl ∈+∈= ∗∗ , the new
kriging system, referred to as the Probability Class Kriging (PCK) is now:
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The kriging system (6) is merely a restriction of (7) in which p∗  is either 0 or 1.

The two methods of estimating the class are now compared using a cross-validation
procedure on rainfall prediction: each point in turn is re-estimated and compared to its true value.
The model and its parameters are not re-estimated for each point, but rather are considered fixed.



170

Hence, it is not procedures which are compared, but fully specified models. The model for the
correlation function ( )ρ ⋅  was defined section 1.1:

ρ(⋅) = 0.53sph(⋅,17 km) + 0.47sph(⋅,100 km).

An ordinary kriging method (directly on Z, without any classification) is used as benchmark (linear
model; elliptic anisotropy: long axis is 25° NE, scale factor = 10 m; short axis is 65° NW, scale
factor = 3.3 m; unique neighborhood). The results of the cross-validations are summarized Table 3:

Method [ ]E Z Z∗ − [ ]σ Z Z∗ − [ ]E Z ZRob.
∗ − [ ]σRob. Z Z∗ −

NN 5.5 75.0 13.6 50.1

PCK 3.0 65.5 8.0 47.6

OK 1.7 61.1 8.2 46.1

Table 4. Comparison of cross-validation results.

Column 3 and 4 of Table 3 are robust error means and variances, i.e. statistics computed after
excluding the 5 highest errors (in absolute value). The nearest neighbor method (NN) for
estimating the class does not lead to very good results. This comes from the fact that, when a class
is wrongly estimated, the error of estimation is automatically to the order of the difference of the
means. Kriging the probability of belonging to a class smoothes the transition from one class to an
other, and the estimation is improved, specially in terms of raw variance (column 2). Results of
PCK are close to an ordinary kriging procedure with a linear variogram, specially in terms of
robust variance. In theory, ordinary kriging should have been retained as the best candidate for the
interpolation algorithm. However, the classification based model is a more appealing model for
this particular dataset, as the classification procedure gives directly a dichotomy of the data, which
ordinary kriging is not able to do.

4. COMPARISON AND DISCUSSION

4.1. Comparison of estimated vs. true data

4.1.1 Overall performance

The classification algorithm followed by the Probability Class Kriging equations was run
to estimate rainfall on the 367 locations where true data were known. A comparison of estimated
vs. true data is summarized Table 4 and Figure 3 and 4. Since kriging is an exact interpolator,
comparison statistics are computed on the 367 data to be estimated. The bias is low (-4.6),
indicating a slight overall underestimation, and the root mean square error is equal to 57.4. Mean
absolute and relative errors are equal to 42.1 and 0.68 respectively. The histogram of Z*  is
depicted (along with the histogram of Z) in Figure 3a. It can be seen that Z* has a peak of
distribution in the third bin, around the mean of the group of lower data. The histogram of errors
(Z* - Z) (Figure 3b) is not symmetrical and has a quite important tail towards the lower values,
illustrating a problem of under-estimation on a few points.
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Min Max Mean Median Std. Dev.

Z 0 517 185.2 162.0 111.2

Z ∗ 21.2 438.6 180.7 160.5 85.9

( )Z Z∗ − -290.0 215.7 -4.6 2.6 57.4

Z Z∗ − 0.3 290.0 42.2 31.6 39.0

Z Z Z∗ − / 0.0 91.6 0.68 0.18 2.21

Note: statistics on true values are computed on the 367 values to be estimated, except line 5, where data with
Z=0 were excluded.

Table 5. Comparison of estimated vs. true rain data

As it is always the case with linear interpolation procedures, estimated values are under-
dispersed (σ2(Z*) = 7393, whereas σ2(Z) = 12371). Hence, low values are consistently over-
estimated (E[Z* - Z] = 84  for the 10 lower values Z) and high values are consistently under-
estimated (E[Z* - Z] = -158 for the 10 higher values Z). This is clearly visible on Figure 3c and 3d:
the regression line of Z given Z ∗  (dashed line) has a negative intercept with a slope larger than one
and the correlation between Z* - Z and Z* is equal to -0.65. Figure 4a is a map of errors, where
positive errors (Z* > Z) are proportionally depicted with a cross (+), whereas negative errors (Z* <
Z) are depicted with a circle (o). On the same picture, the convex hulls computed according to the
classes (see section 1.1) are also shown. Important errors are generally located along the border of
the convex hulls, except for a couple of underestimates in the NE corner of the image. This
illustrates the principal weakness of the method: if the indicator of the classes is wrongly
estimated, the estimation error on the data will be important (to the order of the mean difference).
The southern limit of the NW front is a typical example of this problem: in the neighborhood of the
points to be estimated, there where significantly more points belonging to the estimated class of
lower values, while these points had in reality high rainfalls.
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Figure 17. Comparison of estimated vs. true values. a) Histogram of  Z* (in black) and Z (in gray).
b) histogram of the error of estimation. c) and d), scatter plots of Z* and Z* - Z vs. Z: diagonal and
Z* - Z= 0 are shown with a solid line; regression is shown with a dashed line; the envelope Z* = Z
±1.96σ(Z* - Z)  is also shown with dashed lines.

4.1.2 Estimation of extreme values

The performances in predicting the 10 lowest and highest rainfall measurements are
summarized Figure 4b. Since kriging is an exact interpolator, the values included in the sample
where always correctly estimated. Among the 10 highest kriging estimates, 7 belong to the sample,
5 belong to the set of  the 10 highest true values and 1 is wrongly estimated, but not badly located
(very close to the upper convex hull). None of true lowest values not included in the sample are
correctly estimated. This is easily understandable as 9 of the lowest values to be estimated (from 0
to 8 10th of mm) are less than the lowest value in the sample (1 mm). It is well known that linear
interpolators rarely estimate outside the bounds of the data, hence it was unlikely to be able to
locate the minimum values correctly. Except one point in the sample, the set of true and estimated
low values are disjoint, and not very close geographically. In summary, if probability class kriging
based on geostatistical classification is able to locate the general area of the high values (the fronts,
described by the two convex hulls), it does not estimate accurately the exact location of 10 highest
values. As for the low values, probably because of the sample scheme, the algorithm is not able to
identify the locations correctly.

4.1.3. Accuracy

The criterion chosen for describing accuracy is the relative error of estimation (Z* - Z) / σ∗.
On Figure 4c, relative errors larger than 2 (resp. smaller than -2)  are highlighted with a cross (+)
(resp. with a circle (o)); relative errors with an absolute value less than 2 are depicted with a dot (·).
There are more underestimates (23) than overestimates (6). Overall, there are 29 relative errors
outside the interval Z* ± 2σ∗, i.e. 7.9% of the errors, close to the theoretical rate of 5%. Again,
points with large relative errors are concentrated along the convex hull borders of the class of high
values. Hence, the accuracy of the estimate is correctly approximated by twice the kriging standard



173

deviation except along the borders of the classes, where misclassifications (and higher errors than
expected) are possible.
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c)   Proportional map of high relative errors
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Figure 18. a) and c) Proportional map of errors (a) and relative errors (c); underestimates (o) and
overestimates (+) are concentrated along the convex hulls of the classes of higher values (dashed
lines). b) Map of the 10 estimated (×) and true (+) highest values, and the 10 estimated (∇) and
true (∆) lowest values; sample values are highlighted with a circle (o). c) Proportional map of high
relative errors (in absolute values). d) Kriging map, with the 10 highest (squares) and lowest
(circles) estimated values.

5. DISCUSSION
A new method for both estimating the classes of bimodal data in a spatial context and

interpolating the data was presented. Estimation of the classes is based on a minimum deviance
argument, with a maximum likelihood estimator of the deviance. For the moment, the partition is
defined by the cutoffs, i.e. it is searched within a restricted subset of all possible partitions. The
current classification is thus sub-optimal and a broader search is likely to decrease the number of
misclassified points, hence to decrease the MSE of the probability class kriging. The maximum
likelihood argument is based on the assumption of gaussian densities in each class, but this
assumption is not really necessary: as it is often the case with the gaussian model, the maximum
likelihood solution is also the least square solution (it is for example the case for kriging). Hence,
equations (3) and the algorithm of subsection 2.2 can be applied to non-gaussian data: they still are
optimal in terms of  least squares.
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In terms of MSE, it leads to results comparable to ordinary kriging (OK), known for being
a very robust interpolation method. Its interest lies in the contouring of a region of higher values,
which OK is not able to do (it is well known that the contouring of a kriging map is biased
estimator of the set above the threshold). It can be expected that prediction is at least as good as
(probably better than) OK inside the classes, but that it can be worst than OK at the borders. Points
located at the border of the classes should probably be estimated separately. The final kriging map
is depicted Figure 4d. It shows a strong anisotropy in the SW-NE direction, in accordance with the
variogram model. Zones of high values are clearly visible.

Since PCK is a linear interpolator (hence a low-pass filter), it tends to create smooth maps.
If the classification part is able to locate the general area of low and high values, it cannot estimate
the exact location of extremum values. This is a problem faced by every linear interpolator, and
different approaches must be developed for estimating extreme values and middle-range values.

Geostatistical classification and PCK cannot be applied as a black-box for the moment.
There is a need for an exploration of the data (are the data bimodal ? are two, or more classes,
necessary ?) prior to the classification algorithm and a need for pre-modeling (what is the common
correlation structure ? what is the variogram of the indicators ?) for the kriging. It is a useful tool
for long-term management studies: geostatistical classification is able to separate low and high
value classes and PCK has good performances both in locating high values and in overall
estimation, but as a linear interpolator, it has some difficulties in estimating extreme values. This
study was made using the S-plus software and necessary routines were written in this language or
in FORTRAN.
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Abstract: Direct Neural Network Residual Kriging (DNNRK) is a two step algorithm (Kanevsky 
M., et. al. 1995). The first step includes estimating large scale structures by using artificial neural 
networks (ANN) with simple sum of squares error function. ANN, being universal approximators, 
fairly well model overall non-linear spatial pattern. ANN are model free estimators and depend 
only on their architecture and the data used for training. The second step is the analysis of 
residuals, when geostatistical methodology is applied to model local spatial correlation. Ordinary 
kriging of the stationary residuals provides accurate final estimates. Final estimates are produced as 
a sum of ANN estimates and ordinary kriging (OK) estimates of residuals. Another version of 
NNRK — Iterative NNRK (INNRK), is an iterated procedure when covariance function of the 
obtained residuals are used to improve error function, by taking into account correlated residuals 
and to specify residuals followed by ANN modelling, etc. INNRK allows reducing bias in 
covariance function of the residuals. However, INNRK is not the subject of this paper. The present 
work deals with application of DNNRK model. NNRK models have proved their successful 
application for different environmental data (Kanevsky, et. al. 1995; Kanevsky, Maignan et. al. 
1997; Kanevski, Demyanov and Maignan 1997; Kanevsky, Arutyunyan, et. al. 1997).  
 
Keywords: artificial neural networks (ANN), ordinary kriging, variography, residuals, non-
stationarity, trend, clustering. 
 

1. INTRODUCTION 
 ANN are frequently applied nowadays for analysing spatial data as well as for prediction 
mapping. Usually, when spatial trend exists in the data, ANN is applied for residuals, remaining 
after trend removal procedure. In this case one have to estimate the trend with, for instance, a 
polynomial, or another model. 

 The method suggested in the present paper is based on the idea of using ANN to estimate a 
non-linear drift and apply geostatistical predictor (kriging) to the residuals. This alternative 
approach to ANN use brings high quality results described in the paper. 

2. NEURAL NETWORK RESIDUAL KRIGING ALGORITHM 

2.1 Data Preparation 
First, the data are prepared and preliminary analysed by using descriptive statistics. Special 

attention is paid to outliers and data magnitude and variability. All available data are split into 
training and validation data sets, according to the conditions of the SIC’97 project. Training data 
set is used for training the ANN. Validation set is used only as an independent (“additional 
sampling”) data set for testing. 
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Spatial structure of the data is explored using variography along with trend analysis. 
Usually, description of spatial continuity using spatial correlation functions helps to understand the 
phenomenon under study, its anisotropic structure, variability at different scales, possible relations 
between ‘stochastic’ and ‘deterministic’ parts, etc. (Isaaks, Srivastava. 1989). ANN, being a data-
driven approach, highly depends on quality and quantity of data. An important question is, how 
representative the data are in respect to clustering of monitoring networks, described by spatial and 
dimensional (fractal) resolutions. Some aspects of these problems are discussed in short below.  

2.2 Designing network architecture 
A workhorse of ANN — feedforward neural network (FFNN) — multilayer perceptron is 

used. FFNN consists of input layer, output layer and several hidden layers (Fig. 1). Number of 
hidden layers was never chosen more than two. Number of neurones in the hidden layers can vary. 
Choosing the appropriate number of hidden neurones is very important. Using too few will starve 
the network of the resources, required to solve the problem. Using too many will increase the 
training time and may cause a problem called overtraining or overfitting (network will have too 
much information processing capabilities and will learn insignificant aspects of the training set, 
which are irrelevant to the general population). In this case it was important to investigate 
behaviour of the predictions and residuals with variable number of hidden layers and neurones. 
According to NNRK method, we used as few hidden neurones as possible to catch the large-scale 
structure only. Spatial correlation on the smaller scale remaining in the residuals are modelled 
within geostatistical framework. 
 

  
Figure 1. Four layer feedforward neural network (2-5-3-1) with two hidden layers 

 

2.3 Training of the network 
Training data set was used for supervised learning. A classical vanilla backpropagation 

algorithm was applied with a few essential modifications: initial weights are selected with the help 
of genetic optimisation algorithms; conjugate gradients are used for the efficient local minimum 
search of error function; simulated annealing is used in order to escape from local minima. 

2.4 Evaluating performance of the network 
Different tools can be used for the evaluation, like cross-validation, accuracy test. So 

called accuracy test is ANN estimation function values in the points used for training. Accuracy 
test provides the residuals at the training points, which are used in further geostatistical analysis. 
Neural Network Residual Kriging (NNRK) is a two step algorithm (Kanevsky 1995). The first step 
includes estimating global (trend) structure by using ANN, the second step is residuals’ analysis, 
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where geostatistical methodology is applied to model local spatial correlation. Final estimate is 
produced as a sum of ANN estimates of the samples and ordinary kriging (OK) estimates of 
residuals. Scatter plots – estimated versus real data – describe how well the FFNN capture the 
correlation between locations and contamination. Results of the accuracy tests for the different 
networks are presented as scatter plots.  

2.5 ANN Testing 
Testing is a process of estimating the FFNN ability to generalise, that delivers a correct 

response to the inputs ANN has never been exposed before. At this phase validation data set was 
used.  

2.6 Operation phase: prediction mapping 
Co-ordinates on a regular grid are given as the input to the ANN, which produce gridded 

predictions at the output.  

2.7 Analysis of the residuals, structural analysis and modelling, kriging  
Residuals, obtained after the learning phase, were analysed with the help of exploratory 

variography. Two kinds of residuals’ behaviour are possible: 1) network was able to learn the data, 
and the residuals are not correlated (neural network regression model),  2) network was able to 
catch only large scale structure, and the residuals are spatially correlated. Usually, residuals, unlike 
the original data, perform stationarity and well-behaved semivariograms. Neural networks feature 
robust behaviour, while finding large-scale structures, leaving local peculiarities for more sensitive 
tools, like a variogram. Much more powerful networks should be designed, trained, and validated, 
in order to learn small-scale variations.  

2.8 Prediction mapping  
Developed variogram model was used for kriging prediction mapping. After kriging 

predicted residuals were added to the results of neural network predictions (NNRK – neural 
network residual kriging). Comparing ANN and NNRK predictions, it is seen, that NNRK provides 
better treatment of the original samples, because OK procedure estimates the function exactly at 
the sampling points, unlike ANN, which gives close but not the exact values. This feature allowed 
to discover more contamination spots and local peculiarities of the contamination pattern. 

2.9 Final Validation 
Calculating final NNRK predictions at validation points and comparison with the true 

values. 

3. MONITORING NETWORK ANALYSIS 
Before analysing spatial distribution function, monitoring network analysis is to be made 

for better understanding of the spatial pattern and its cluster structure. The following networks are 
considered: training network – 100 samples initially available for analysis), validation network – 
367 points to be estimated, all data network – 467 sample points of from both networks together. 
Cluster structure of the networks used in the study is shown with the help of Delaunay 
triangulation (Fig. 2). Monitoring network analysis is one of the most important parts of analysis of 
spatially distributed data, because all currently known interpolation technologies are affected by 
the spatial distribution of sample points, and even the statistical characteristics of data (histograms, 
mean and others) are dependent on the presence of cluster structures. Several different approaches 
can be used for network analysis: spatial/geometrical, e.g. a histogram of squares of areas of 
influence; statistical, e.g. Morishita diagram, and analysis of the network, dimensional resolution – 
all kinds of fractal network analysis. A histogram/diagram of squares of these areas of influence 
(also called Dirichlet cells, Voronoi polygons) can characterise the spatial resolution and 
homogeneity of the monitoring network (Fig. 4). The presence of several peaks means the 
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contagious structure of monitoring network. The presence of long right tail means the presence of 
holes in the network. The presentation of the Voronoi map helps one to discover the regions with 
prevailing network disturbances and the values (Fig. 3). 

 

 
Figure 2. Triangulation for training (over) and validation (below) monitoring networks 

  

 
Figure 3. Voronoi polygons for training (left) and validation (right) monitoring networks. 

 
Average distance between the samples characterises effective size of the smallest spatial 

structure to be discovered by the network (see Table 1). 
 

Monitoring networks Training Net  

(100 samples) 

Validation Net  

(367 samples) 

All data Net 
(467 samples) 

Average distance (meters) 19870.0 11010.0 9920.0 

Table 1. Average distance between the samples. 

Statistical approach to network analysis is realised with the help of Morishita diagram (Morishita 
1959). To estimate Morishita index (Iδ) the whole given area is divided into small rectangular cells 
of equal size. (δ). Thus, 
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δ  ,      (1) 

where ni (1=1,2...Q) is the number of points in the i-th cell. 
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Figure 4. Diagram of Voronoi polygon squares for training, validation and both together 
monitoring networks. 
 

Morishita diagram measures the dependence between Iδ and the cell size (δ). It provides 
various information about the structure and the clustering size of the network. Morishita diagram 
has three characteristic types of behaviour. If distribution of points is uniform, Morishita index Iδ 
increases to 1 with the growth of the cell size. If the distribution is contagious (with cluster 
structures) Morishita index Iδ decreases with the growth of the cell size. The characteristic of the 
cluster size is the point on Morishita diagram, where its behaviour is changing. Iδ=1 for a random 
distribution of points and Iδ >>1 for self-similar fractal clustering.  

Morishita diagram in Fig. 5 leads to the following conclusions. Training monitoring 
network (100 samples) has a cluster structure up to 30 km size. Beyond this range clusters can be 
considered as separate points. Validation network (367 samples) and network for all data (467 
samples) are similar in their cluster characteristics. The effective cluster size is about 40 km.  

If a set of sampling points is self-similar, i.e. a magnified version of any small part of it is 
statistically similar to the whole set, it can be characterised by its fractal dimension. It is well 
known, that in order to detect the phenomena by monitoring network, a network must have not 
only sufficient spatial resolution, but also sufficient dimensional resolution. Whenever fractal 
dimension D(fract) is less than Euclidean dimension D(Eucl), sparsely distributed phenomena with 
dimension less than D(Euclid) -D(fact) cannot be observed, and hinted at the difficulties in 
interpolating low-dimensional sparse data onto two-dimensional regular grids (Korvin, Boyd, 
O'Dowd 1990).  
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Figure 5. Morishita index diagram for training, validation and both together monitoring networks. 

  

Figure 6. Fractal dimension curves for training, validation and both together monitoring 
networks: sand-box counting method (left) and box counting method (right). 
 

4. STRUCTURAL ANALYSIS OF THE RAW DATA 
The initial data set (100 samples) was explored for spatial correlation structures. The main 

objective of this study is to decide which model of spatial continuity to use: stationary or non-
stationary. Drift analysis was performed along with conventional variography. Variogram rose 
(Fig. 7) shows periodical structures with different ranges in all directions. Number of pairs in 
directional variograms ranges from 50 to 200 depending on the lag and direction. Along with 
periodicity, geometric anisotropy can be seen in SW-NE direction on a smaller scale (30-60 km). 
Drift rose in Fig. 8 demonstrates both positive and negative drift depending on the direction. On a 
smaller scale (40 km) drift module is lower and ranges around zero. Presence of drift and complex 
anisotropic correlation structures requires complicated non-stationary prediction models or using 
trend-removing procedures before applying stationary models. Original rose display for variograms 
and drift was developed with the help of VarRose software (http://www.ibrae.ac.ru/~mkanev/). 
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Figure 7. Directional raw variogram surface (left) and directional drift surface (right). 

 

    
Figure 8. Directional raw variogram (left) and directional drift (right). 

5. NNRK PREDICTION OF CLIMATIC DATA 
For the climatic data on Austria NNRK was applied in order to model multi-scale spatial 

structures.  

5.1 ANN estimation 
ANN was chosen to estimate large-scale correlation structures, including periodical 

structures discovered by the variogram (see Fig 9 top). 100 samples were used for training and 
testing the network. ANN of different architecture were tested. [2-5-0-1] ANN showed the best 
performance, with 1 hidden layer containing 5 neurones. Accuracy test was used to qualify the 
ANN training (see Fig. 10, Table 2). ANN [2-5-0-1] show good overall performance on the large 
scale (Fig. 14 left), fair correlation (0.851) with the measurements on the validation set (367 
samples). ANN estimates perfectly reflect the large-scale correlation structure on 80000 m and 
periodical effects (Fig. 9).  

 
ANN estimates [2-5-0-1] [2-10-0-1] 
Correlation coefficient 0.866 0.860 

Table 2. Accuracy test results: correlation between ANN estimates and measurements. 
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Figure 9. Variograms for raw data (top) and for ANN estimates (bottom). 

 
5.2 Estimates of Residuals 
Now, lets study ANN residuals=[measurements - ANN estimates]. They appear significant 
correlation with the measurements – 0.494 (see Fig. 10 right).  

 

  
Figure 10. Accuracy test: Scatter plot of ANN estimates for [2-5-0-1] and [2-10-0-1] (left), scatter 
plot of residuals (right). 
 
This is a sign of a remaining correlation, which was not captured by ANN. ANN has removed most 
of the periodicity and large scale trend, which is shown in variogram rose and drift rose (Fig. 11). 
Drift fluctuates around zero and does not appear any strait tendency in most directions (Fig. 12). 
Spatial structure of residuals is on a small-scale (30000 m), features stationary behaviour and is 
easy to be modelled (Fig. 13). There still is some geometrical anisotropy, which can be modelled 
within stationary variogram model. 
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Figure 11. Variogram rose (left) and drift rose (right) for residuals from ANN [2-5-0-1]. 

 

 
Figure 12. Drift in 6 directions for residuals from ANN [2-5-0-1]. 

 

 
Figure 13. Anisotropic variogram model for residuals from ANN [2-5-0-1]. 
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Estimation of residuals is made with ordinary kriging (OK). Prediction of residuals is shown in 
Fig. 14. 
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Figure 14. Maps of ANN [2-5-0-1] estimates (left) and OK estimates of residuals (right). 

 

5.3. NNRK final predictions 
Final NNRK predictions are obtained by summarising ANN and OK estimates in Fig. 14. 

Results of gridded predictions are presented in Fig. 15 with 10 maximum and 10 minimum sample 
values from the whole data set (467 samples). Ten minimum and ten maximum samples are 
situated in the corresponding areas of maximum values and minimum values and show good fit to 
the isolines of the estimates. As far as NNRK exactly honours the initial data, 10 maximum and 10 
minimum measurement values from the whole data set (467 samples) are fairly well reproduced. 
Six out of ten minimum samples fall into 10 minimum NNRK estimates, and four out of ten 
maximum samples fall into 10 maximum NNRK estimates. Underestimating some peculiarities in 
the hot spots, which were not reproduced by the training data, causes lower fraction for maximum 
values. NNRK significantly improved pure ANN estimates: correlation with the validation 
measurements has increased as well (see Table 3). 

 

 
Figure 15. NNRK predictions with 10 maximum and 10 minimum measurement values from the 
whole data set. 
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Estimates NNRK ANN [2-5-0-1] 
Correlation coefficient 0.866 0.851 

Table 3. Validation results: correlation between true measurements and NNRK estimates, ANN 
estimates. 
 

6. ANALYSIS OF THE RESULTS 

6.1 Validation estimates 
Quality of NNRK predictions were analysed with the help of the validation data set (367 

samples), which was not used for training ANN or OK estimates. NNRK estimates appear good 
correlation with the validation samples (Fig. 16 left). Correlation between validation errors 
(estimated-measured) and the measurements is -.356, which means some underestimation 
especially for the high values (see Fig. 16 right). The univariate distribution of NNRK predictions 
in the validation points perfectly reproduces the distribution of the measurements (see Table 4 and 
a histogram of NNRK estimates compared with the one for validation measurements in Fig. 17). 
NNRK estimates and the validation measurements can be visually compared with the help of 
Voronoi polygons (Dirichlet cells), which represent areas of influence around the samples (see Fig. 
18). Along with good overall performance, there appeared under estimation of the eastern hot spot. 
This may require deeper structural analysis of residuals or application of indicator methods for 
different cut-offs. 
 

  
Figure 16. Scatter plots: validation estimates/measurements (left), absolute error/measurements 
(right). 
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Figure 17. Histograms of NNRK estimates (left) and validation measurements (right). 
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Statistics Minimum Maximum Mean Median Std.  Dev. 
True values 0.0 517.0 185.36 162.0 111.167 
NNRK Estimated values 0.0 514.1 181.45 160.5 105.220 
ANN 2501 estimates -3.53 425.9 186.28 178.4 101.3 

Table 4. Validation: basic statistics for measured (true) and estimated (NNRK) values. 
 

 
Figure 18. Voronoi polygons for validation results: NNRK estimates (left) and measurements 
(right). 
 

Statistics Error 
(Z*-Z) 

Absolute error 
 |Z*-Z| 

Relative error 
(Z*-Z)/Z 

Mean -3.9 39.38 0.099 
Standard deviation 56.28 40.35 0.659 
Minimum -245.0 0 -1.0 
Lower Quartile 25% -30.86 12.47 -0.159 
Median 0.0 27.70 0.0 
Upper Quartile 75% 24.21 50.84 0.179 
Maximum 313.24 313.24 6.697 
Skewness -0.154 2.40 5.55 
Kurtosis 4.253 8.83 42.622 

Table 5. Bias analysis of validation errors of NNRK estimates - measurements. 

 
Statistics NNRK estimates 
Root mean square error (RMSE) 56.342 
Mean absolute error 39.38 
Relative mean error 0.099 

Table 6. Validation Error statistics of NNRK estimates (estimated-measured). 
 

6.2 Validation errors 
Validation errors (estimated-measured) characterise the quality of predictions. Ideally error 

mean and median should be 0.0, distribution of errors should be symmetric around 0.0. Statistics 
for absolute errors (Z*-Z) and (Z*-Z)/Z, where Z* is NNRK estimate and Z is true value, is 
presented in Tables 5 and 6. Absolute error distribution has got slight negative bias of mean (< 1%) 
and no bias of median, which is considered acceptable. Moreover, absolute error distribution is 
very slightly skewed (-0.154). Along with almost symmetric quartiles, this fact supports the 
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assumption of symmetry (see Figs. 19, 20). Relative error also has got zero median and symmetric 
quartiles. However, it is rather skewed, because of positive outliers. These outliers also affect the 
mean, which is about 10% biased form 0.0. Four positive outliers can be distinguished in the 
Voronoi polygon map in Fig. 21 – three of them are situated at the boundary. 
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Figure 19. Validation: NNRK estimates - measurements, histogram (left) and normal probability 
plot (right). 
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Figure 20. Box and whisker plots of mean and median for absolute errors: estimated-measured. 

 

Figure 21. Voronoi polygons for validation results: relative error (Z*-Z)/Z (left), absolute error 
Z*-Z (right). 
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6.3 Accuracy of the estimates 
Accuracy of NNRK estimates is given by OK estimation error of residuals. Spatial 

distribution of the estimation error is shown in Fig. 22. It is unconditional and represents the 
density of the monitoring network. Univariate distribution of the estimation error is quite close to 
normal (see Fig. 23) and has no dependence from the validation measurements (Fig. 24). 

 

 
Figure 22.  Map of NNRK estimation error. 
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Figure 23. NNRK estimation errors: histogram (left) and normal probability plot (right). 

 

 
Figure 24. Validation: NNRK estimation error / measurements scatter plot. 
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7. SOFTWARE TOOLS 
A wide collection of software tools (a part of them is known as Geostat Office — 

http://www.ibrae.ac.ru/~mkanev) were used to produce and to present the results. Data preparation 
and visualisation was performed with GeoPlot/3Plot (Kanevski, Chernov, Demyanov, 1997) and a 
data base management system. ANN were trained and applied using programs from Masters 
(1993). Variography was performed with the help of VarRose and VARIOWIN (Pannatier, 1996). 
Ordinary kriging predictions were carried out with the WinGSLIB, a Windows extension of GSLIB 
(Deutsch & Journel, 1996) which allows the calculation of the estimates on arbitrary grids. 
Statistical description was made with the Statistica and 3Plot. Contour maps were produced with 
SURFER, while 3Plot produced the same maps in colour and Voronoi polygon maps.  

8. CONCLUSIONS 
NNRK method showed good quality performances in the following aspects: 

• estimation of the univariate distribution of the validation set (minimum, maximum, median, 
mean and standard deviation); 

• spatial distribution of the validation set including western hot spot; 

• modelling and spatial estimation of large scale structure, including periodicity; 

• modelling of small scale effects given by ANN residuals; 

• Acceptable quality of absolute validation errors – minimum bias of mean, no bias of median, 
almost symmetric distribution. 

Computed predictions appear some problems with underestimating the eastern hot spot and 
positive bias of relative error, which is cause by three points at the boundary.  

NNRK technology, being very flexible, can be applied to different kinds of data. The 
method is exact, i.e. if there are no measurement errors — predictions at the sampled points equal 
to measurements. Even simple ANN can detect and model highly non-linear trends in the region 
being under study in case of noisy data. Instead of using geostatistical analysis and modelling of 
the residuals, incremental methodology, based on ANN only, can be used (at each iteration hidden 
neurones concentrated on the residual information can be added) (Chentouf, et. al. 1997).  

The method can be adapted both for emergency situations and long term management.  
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Abstract: This study applies the maximum entropy estimator to the interpolation of daily rainfall 
measurements in Switzerland taken on April 26, 1986. The major purpose of the paper is to 
introduce the methodology of maximum-entropy spatial interpolation. The accuracy of the 
estimation measured by the coefficient of determination is therefore only at the value of 0.0114. 
Moreover, the estimation errors are, to some extent, correlated to the real measurements. The larger 
the measurement is, the more severe the error becomes. The structure analysis on the 100 
measurements used for estimation depicts the properties of anisotropy and non-stationarity in spite 
of the assumptions of second-order stationarity and isotropic correlation. The estimation errors, 
however, seem to be spatially independent. The spatial correlation coefficients of the errors 
(calculated based on the construction of the correlogram of the estimation errors) are only at the 
order of 0.01. 
 
Keywords: Shannon’s Entropy, Maximum Entropy Principle, Lognormal Random Field, Simple 
Kriging, Log-Kriging. 

1. INTRODUCTION 
This paper is principally the result report of the participation of SIC ’97. The focus and 

purpose of the study are a methodological introduction of the maximum entropy estimator (M.E.E. 
hereafter) rather than the development of an effective interpolator. The estimation results, thus, 
may pose some errors or biases. The paper consists of, in addition to the brief introduction, four 
parts: the description of the M.E.E., implementation and assumptions, results and discussion, and 
the conclusion. The data set used is the rainfall measurements in Switzerland distributed by the 
editorial board. Some descriptive statistics and histograms are shown as Figure 1 and Table 1 (to 
be described in the section of interpolation results and discussion). The histograms depict that the 
rainfall data seem to be lognormally distributed rather than the commonly assumed normal 
distribution. 

2. THE MAXIMUM ENTROPY ESTIMATOR 
The maximum entropy estimator is based on Shannon’s (information) entropy concept 

(Shannon, 1948) and the maximum entropy principle (Jaynes,1957). Given expectations (i.e., prior 
information) of a univariate random variable or a multivariate random function, the maximum 
entropy principle can be used to derive a minimally prejudiced (i.e., least presumptive) probability 
distribution (Tribus, 1978; Jaynes, 1982; Theil and Fiebig, 1984; Kapur, 1989). For a multivariate 
continuous random function, this principle can be described by an optimization problem:  
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(a) the entire data set 
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(b) the data used for interpolation 
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(c) the data left for estimation 
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(d) the estimates 

Figure 1. Histograms and descriptive statistics of the data set, data used for interpolations, data 
left for estimation, and the estimates. 
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)(log)( zZ f=ε  denotes Shannon information; rg)  denotes expectations of the functions )(zrg  

with respect to the random vector Z . 

The maximum entropy estimator of )( 00 xZZ =  minimizes the posterior uncertainty 
(conditional information) of 0Z  given ),,( 21 ng zzz L=z . Given a set of data locations 

),,( 21 nxxx L  and the measurements ),,( 21 ng zzz L=z , the conditional information, denoted 

)|( 0 gZ zε , is minimal with respect to the optimal (maximum entropy) estimate of *
00 )( zZ ))

=x . 
The solution to the following formulation (necessary condition for a minimum) determines the 
maximum entropy estimator: 

0
)(

),(
log)|(log

)|(

*
00

*
00

*
00

0

0
0

00

0 ===
=== zzg

g

zz
g

zz

g

f
zf

dz
dzf

dz
d

dz
Zd

))) z
z

z
zε

  (4) 

where )|( 0 gzf z  is pdf of 0Z given gz ; and, ),( 0 gzzf  is the joint pdf. The derivative of 

)(log gf z  with respect to *
00 zz )=  is zero because the prior pdf )( gzf is independent of *
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above equation then becomes:  
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The above equation is the necessary condition for a minimum. Given concavity of the logarithmic 
function (or convexity of the information function) the condition is also sufficient. 

For the prior information with the first moments given (i.e., a Gaussian random field), the 
maximum entropy estimate of 0Z  given ),,( 21 ng zzz L=z  is (Lee and Ellis, 1997): 
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where gggug ΣΣ ,, 0m  are the given first two moments. The estimation error associated with the 
estimate is:  
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where 2
0σ  is the variance of Z0 (log-transformed variates). The maximum entropy estimator and the 

associate estimation error of a lognormal field (with the means and variances of the log-
transformed variates given) are (Lee and Ellis, 1997):  
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where ii YZ log=  is the log-transformed variables; µe  is the geometric mean; *
0Z
)

 and )( *
0Zerr
)

 are 
the maximum-entropy estimates and the error variances of the log-transformed variates which are 
normally distributed. The lognormal M.E.E. is not an exact estimator. The biases of the estimates 
at sampled locations are: });{exp( 2

2
3 ii ∀− σ . 

3. ASSUMPTIONS AND IMPLEMENTATION 
The focus of the study is to introduce methodologically the maximum entropy estimator. 

Thus, we simplify the procedure of data analysis. For both the presumed Gaussian and lognormal 
fields, we assume constant means and isotropic covariance structures despite they seem to be 
anisotropic. The well-known second-order stationarity and isotropic correlation are assumed first to 
apply the maximum entropy estimator. These yield a Gaussian random field when the principle of 
maximum entropy is applied. Unfortunately, some of the estimates yield negative values that 
depart from the physical meanings. The lognormal maximum entropy estimator is therefore 
applied.  

The underlying assumptions of the lognormal maximum entropy estimator are a second-
order stationary and isotropic correlation structure on the log-transformed variates. Based on 
structure analysis on the precipitation data, the correlation structure can be described fairly by a 
Gaussian model of: 
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where 0.5724 is the sample variance calculated from the log-transform values of the 100 
observations; 35000 (m) is the so-called “range”. The experimental covariance structure and the 
model are illustrated as Figure 2. 
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Figure 2: Correlation structure under assumption of isotropy and second-order stationarity on the 
log-transformed variates. 
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The maximum entropy estimator is relatively still at the stage of developing. There seem to 
be no commercial programs or codes available. A Fortran 77 program is therefore coded for the 
use of the study. The program takes the covariance structure as a user-defined function. 
Measurements and locations to be estimated are read in with conventional program input/output 
procedure. Figures and maps are constructed by using the Microsoft Excel and Surfer (Golden 
Software).  

4. INTERPOLATION RESULTS AND DISCUSSIONS 

The estimator formulated as Equation (8) is implemented as a Fortran 77 program 
developed by the author. The estimation results have been submitted to the editorial board. Some 
descriptive statistics of the estimates associated with those of the entire data set and the data used 
for estimation are listed as Table 1. The underlying assumption of the M.E.E. applied is the 
lognormal random field. The mean and variance of the data and estimates are also calculated based 
on the assumption of the lognormal distribution (denoted as LN-Mean and LN-Variance). The 
estimation errors with proportional symbols denote the differences between estimates and 
measurements are plotted as Figure 3. We define here the estimation error, rather than the error 
variances described previously, as the difference between the estimates and the measurements. The 
isoline maps of estimates associated with the lowest / highest 10 measurement locations are plotted 
as Figure 4. As shown in Figure 4, the M.E.E. identifies 4 of the 10 lowest / highest measurements 
respectively. The characteristics of estimation error, such as descriptive statistics and correlation, 
are listed as Table 2. The bias of errors (i.e., the mean of absolute errors) is 70.62. Moreover, the 
errors seem strongly correlated to the real measurements. The correlation coefficient between 
errors and measurement is -0.5604 for the errors and 0.4975 for the absolute errors. 

 

Statistical Properties All Data Data Used  Estimates by 
M.E.E. 

Minimum 0 10 4.84  
Maximum 585 585 548.10  

Mean 184.24 180.15 159.22 
Median 152 141 138.84  

Standard Deviation 112.26  116.68  97.00  
Geometric Mean* 148.44  142.02  129.58  

1st Quartile 99.50 97.75  81.39  
3rd Quartile 262.50 254.25  216.47  
Log-Mean** 5.00  4.96  4.86  

Log-Variance** 0.85  0.58  0.48  
LN-Mean*** 227.16  189.63  164.96  

LN-Variance*** 120853.31  64112.41  44103.68  
   * Measurements with values of zero are omitted when calculating geometric means. 
 ** Log-Mean and Log-Variance denote mean and variance of log-transformed values of measurement 
respectively. 
*** LN-Mean and LN-Variance are the mean and variance of the data under the assumption of the lognormal 
distribution. 

Table 1. Statistical characteristics of the data set, the data used, and the estimates. 
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Figure 3. Estimation errors with proportional symbols:  -- overestimated;  -- underestimated; 
 -- data used for estimation 

 

Figure 4. Isoline maps of the estimates in which the method of triangulation with linear 
interpolation is used for drawing the isolines. The locations associated with the minimal and 
maximal ten measurements / estimates are posted as circles and squares respectively. The solid 
symbols denote those of the measurements. 
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The descriptions of estimation accuracy here is most likely similar to those of a regression 
problem in which the slope is expected to be one and the interception should be zero. Some 
measures of goodness-of-fit used in econometrics are therefore evaluated and listed in Table 2. The 
coefficient of determination R2 is selected as the measure of the accuracy of the estimation. The 
coefficient of R2 is only at the value of 0.01138 that is far from the value of 1 (perfectly fitted). For 
further comparison, two scatter plots showing the correlation between estimates / errors and 
measurements are presented as Figure 5. The estimates seem to be mostly underestimated and are, 
to some extent, correlated to the measurements. The larger the measurements are, the more severe 
the estimation errors become. An extended structure analysis on the correlogram of the estimation 
errors is carried out. The sample correlation coefficients are only at the orders of 0.001 to 0.01, 
which are far from unity and no decay-typed structure can be observed. The errors, therefore, 
appear to be relatively least spatially correlated. Moreover, in case of emergency such as 
radioactivity monitoring in a nuclear accident, the M.E.E seems more applicable to be incorporated 
into an automated system for quick interpolation of spatial measures, mainly due to its similarity to 
simple log-Kriging and fast computing. The M.E.E. does not need intensive pre-modeling nor a 
great amount of data analysis. 
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Figure 5. Scatter plots of (a) estimates vs. measurements and (b) error vs. measurements where the 
measurements are plotted as the horizontal axis. 
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 Errors* Absolute Errors 
Mean -26.14 70.62 

Standard Deviation 92.83 65.59 
Minimum -370.55 0.03 
Maximum 422.10 422.10 

Correlation with Data -0.5604 0.4975 
Correlation with MEE 0.3147 0.2668 

Mean Squared Errors (MSE) 9327.50 
Root Mean Squared Errors (RMSE) 96.58 

Error Sum of Squares (ESS) 3404536.74 
Total Sum of Squares (TSS) 3443709.41 

Mean Absolute Errors 70.62 
Mean Relative Errors** 0.05132 

Coefficient of Determination R2 0.01138 
* Errors are defined as the difference between estimated values and measurements 
** Measurements with the value of zero are omitted. 

Table 2. Statistical description of the estimation errors 

5. SUMMARIES AND CONCLUSION 
 This study applies the maximum entropy principle to spatial interpolation. The method is 

called the maximum entropy estimator. The major purpose of the paper is to introduce the still-
developing methodology. The estimates are therefore not highly accurate. Nevertheless, the study 
investigates more closely the errors produced by the maximum entropy estimator. The estimation 
errors are, to some extent, correlated to the real measurements. The larger the measurement is, the 
more severe the error becomes. Moreover, the errors seem to be spatially independent.  

The maximum entropy estimator introduced in this study applies the definition of 
Shannon’s entropy of the continuous random variables. The formalism of maximum entropy is 
therefore in the form of integral. With large amount of measurements, the discrete form of 
Shannon’s entropy evaluations (i.e., summation instead of integral) is more applicable. The 
recently developed definition of spatial entropy or spatial disorder by Journel and Deutsch (1993) 
seems to pose great potential for further development of the discrete or block forms of the 
maximum entropy estimator. 
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Abstract: This paper demonstrates the use of dynamic fuzzy-reasoning-based function estimator 
(DFFE) to interpolate rainfall data in a case study in Switzerland. The functional parameters are 
also optimised by genetic algorithms (GA). The procedure operates on a series of overlapping 
partition surfaces around the study area based on expert knowledge and interpretive judgment. The 
procedure allows for spatial interpolation and extrapolation in a higher-dimensional space. 
 
Keywords: Spatial interpolation, fuzzy approximate reasoning, genetic algorithms, overlapping 
partition surface, defuzzification. 
 

1. INTRODUCTION 
In much science and engineering practice today, there is an increasing demand for 

techniques which are capable of interpolating irregularly scattered data distributed in space. These 
techniques have many applications including rainfall estimation. Mathematically, the general 
model for spatial interpolation of values z in a surface R can be expressed as: 

),...,,,( 1 nvvyxfz =      (1) 

where (x, y) is a coordinate location and v1, ..., vn are additional variables with n≥1.  

There are several interpolation models for solving the above problem. Techniques such as 
geostatistical cokriging (Journel and Huijbregts, 1978) and artificial neural networks (Hornik et al., 
1989) are common. The former requires the structural modelling of direct-variograms and cross-
variograms. The deficiencies of this model are: 1) it is difficult to fit a model to the experimental 
variograms (Ahmed and Marsily, 1989); 2) the higher the dimensions of the data vector v, the more 
variograms are required. The latter artificial neural network methods, such as backproprogation 
neural networks, provide a model-free environment to develop a solution and are more efficient in 
terms of data requirements. However, with this approach, the user must define a network 
architecture that generally requires a large data set of past observations of system behavior. 

Zeng and Singh (1996) used fuzzy logic to emulate the flexibility of human reasoning 
processes and to draw conclusions from imprecise and incomplete information, thus “capturing the 
richness of natural language”. This method of reasoning is known as fuzzy approximate reasoning, 
which is a rule-based system of inference in which a fuzzy conclusion is deduced from a collection 
of fuzzy premises. The reasoning is robust within certain ranges. So it is very suitable for 
representing uncertain knowledge (Kasabov, 1996). Using fuzzy modelling, we can model highly 
complex nonlinear systems, such as multi-input and multi-output problems. 
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Recently, some researchers have opted to partition surface (region) reconstruction into a 
set of independent surface (no overlapping partition) generation processes based on unique 
thematic regions, subsequently splicing the set of resultant surfaces back into an overall composite 
(Sinclair and Vallee, 1994). That is, spatial interpolation of the value zi in ith surface Ri  can be 
expressed as: 

),...,,,(
1 niiiii vvyxfz =     (2) 

and, 
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where m is the number of partition surfaces and ΦΦΦΦ represents an empty set. 

Bartier and Keller (1996) opted to modify the univariate inverse distance weighted (IDW) 
interpolation technique to become multivariate. They specified a transition matrix between 0 and 1 
for independent surface change going from one surface to another. In this situation, it would be 
reasonable for the surface to show limited continuity, rather than a sudden break across the 
boundary. 

In practice, the boundaries of surfaces are overlapping, which is desirable to incorporate 
interpretive knowledge with some uncertainty. That is: 
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With regards to this problem, we use a dynamic fuzzy-reasoning-based function estimator 
(DFFE) model proposed by Sun and Davidson (1996) with parameters optimised by genetic 
algorithms (GA). In this paper, we will first review the basics of the DFFE model. We will then 
demonstrate its use in a rainfall case study using a three-input and one-output DFFE model. The 
three inputs are coordinate location x, y and the digital elevation model (DEM) data v and the 
output is rainfall value z. 

2. DFFE REVISITED 
The dynamic fuzzy-reasoning-based function estimator (DFFE) was proposed by Sun and 

Davidson (1996). This method starts with the simple concept of interpolation and extrapolation for 
estimating a function value when certain geometric conditions, “parallel” and “close”, are satisfied 
completely. However, the fuzzy-reasoning component extends the extrapolation and interpolation 
using nonlinear weightings for the neighbouring values based on closeness and the directions of the 
deviation vectors, as a way to mimic human reasoning. Such fuzzy concepts therefore can tolerate 
partial satisfaction of the preconditions and take into account the discrepancy in inferring the 
function values. It is also an assumption-free, model-free and exact interpolator. 

Figure 1 shows the architecture of the DFFE. It is composed of a case base of past 
observations, a dynamic knowledge base creator, a fuzzy-reasoning mechanism and an explanation 
mechanism. When a new input vector is defined, past observations which are similar to the input 
vector are selected and used to build a knowledge base which consists of a set of fuzzy rules and 
related truth values. A fuzzy reasoning mechanism is used to infer the response of the system. The 
explanation mechanism saves the latest rules and truth-values so as to be able to answer questions 
about the response. 
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Figure 1. The structure of DFFE. 
 
A typical DFFE model uses two geometric functions: “close” and “parallel”. The functions are 
usually implemented in terms of fuzzy membership functions. 
 
The “parallel” function can be defined as: 

( )Aa−= expαµ      (5) 

where µµµµαααα is the fuzzy membership value of the fuzzy set A which is the cosine of the spatial angle 
between the deviation vector of the new data point from the reference data point (the closest point 
to the new data point) and the deviation vector of a neighbouring data point from the reference data 
point. The parameter a is the only parameter in the membership function, and is usually determined 
by trial-and-error or cross-validation. 

The “close” function can be defined as: 

( )bD−= expβµ      (6) 

where µβ is the fuzzy membership value of the fuzzy set D which is the distance between the new 
data point and the reference point, and b is the parameter in the fuzzy membership function. Of 
course, other types of fuzzy membership functions are possible. 

3. OPTIMISATION OF DFFE USING GENETIC ALGORITHMS 
The use of DFFE requires the estimation of the parameters a and b in the two fuzzy 

membership functions. This paper uses genetic algorithms to optimise the functional parameters. 
Genetic algorithms (GAs) were first introduced in the field of artificial intelligence by Holland 
(1975). These algorithms mimic processes from the Darwinian theories of natural evolution in 
which winners survive to reproduce and pass along the “good” genes to the next generation, and 
ultimately, a “perfect” species is evolved. Hence the term “genetic” was adopted as the name of the 
mathematical algorithms. Figure 2 shows the architecture of the modified DFFE model. The 
computer implementation of binary GAs can be found in Huang et al. (1998). 

To make a prediction, the selection of neighbouring data points is important. In this paper, 
we use a manual or expert-derived partition of the study area into several overlapping surfaces to 
define the neighbouring points instead of applying a search radius. This means that all of the data 
in a sub-region are the neighbouring points. 
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Figure 2. The structure of the modified DFFE. 
 
The GA-optimised DFFE model (ODFFE) is implemented in two steps: 

 
1) Optimise both “parallel” and “close” fuzzy membership functions (FMF) using neigbouring 

data points on each partition surface. 

Assume that there are ni samples in the ith sub-region. We simply use the leave-one-out method to 
optimise both “close” and “parallel” fuzzy membership functions. The fitness function of GA for 
this problem can be defined as follow: 
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where ( )E a bi ,  is the sum of squared errors on the observed output data zij and the model 
predictions zij

*  obtained from DFFE. The higher the ( )F a bi ,  value, or the lower the ( )E a bi , , the 
better the solution. We repeat the above operation until the maximum number of generations is 
reached. The parameters a and b are thus optimised. 

  
2) Defuzzification of the estimation values within more than one sub-region. 

Let the coordinate of the new data point to be estimated as I
s

i
iijij Ryx

1

** ),(
=

∈ , where 2≤ s≤ m, j ≥ 1, 

then there is an estimation value in each overlapping sub-region, to be the total of s values. These 
values consist of a fuzzy set. Defuzzification is the process of converting a fuzzy set into a single 
value that, in some sense, is the best representation of the fuzzy set. The defuzzification scheme is: 
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where 
*
jz  is the final estimate of the new data point. We use the optimised fitness values ),( baFi  

in overlapping sub-regions as membership values. More details are given in Filev and Yager 
(1991). 

4. CASE STUDY 

4.1. Data Source 
The available data set is from the AI-GEOSTATS mailing list in Italy (Dubois, 1998). 

They reported measurements of 467 daily rainfall made in Switzerland on the 8th May 1986. The 
data set consists of 100 data for training, and the remaining 367 data for testing. The two factors 
controlling rainfall measurements are: 1) 2D coordinate position (x, y); 2) digital elevation model 
(DEM) data (v). In this paper, we use {x, y, v} as the input data and z (rainfall) as the output data. 
Partition of the whole surface is based on {x, y, z} data. 

4.2. Procedure 

Step 1. Partition of the region. 
The first step is to partition the whole region into overlapping sub-regions based on the 

observed 100 data points {x, y, z}, and then to generalise the distribution in each sub-region to 
prediction using the ODFFE. General speaking, the partition for the larger scale region is necessary 
in order to reduce over smooth of the estimation values. Because there are no standard methods 
how to partition the whole region, the subjective method using fuzzy boundaries (overlapping sub-
regions) should be reasonable. 

In this study, we divided the whole region into five overlapping sub-regions. Figure 3 
shows the result of the partition.  

 
Figure 3. Five overlapping polygons for defining five sub-regions. The “�” represent the observed 
data points and the “+” represent the to be estimated data points. 
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Each of the observed and the estimated data at least belongs to one sub-region. Note that 
any polygonal shapes can be used. This is a flexible way to incorporate expert knowledge in spatial 
modelling. 

Step 2. Optimisation of the “close” and “parallel” geometric functions. 
The next step is to estimate the parameters a and b in the fuzzy membership functions in 

each sub-region. The configuration employed in the GA is shown in Table 1.  

 
Population 50 
Fitness function Equation (7) 
Encoding scheme Binary 
Parameters to be optimised a, b in equations (5) and (6) 
Bit-string for each parameter 24 
Ranges of each parameter a∈[1, 100], b∈[1, 500] 
Two-point crossover probability 0.6 
Mutation probability 0.003 
Number of generations 5000 

Table 1.  The configuration of the GA used. 
 
Step 3. Rainfall prediction. 

The last step is prediction. As mentioned earlier, a data point to be estimated can belong to 
more than one sub-region. Hence, a defuzzification algorithm (Equation 9) is employed to yield a 
prediction. 

4.3. Results and discussions 
The estimation values were computed by a DFFE code developed by us. The DFFE code 

was written using Microsoft Visual C++ on Windows NT/95 platform.  Figure 4 shows a scatter-
plot of the estimations versus the true values at the 367 locations. The R2 was 0.67. The statistics of 
all the estimated values are tabulated in Table 2. As shown in this table, the statistics of the 
predictions and the true values are very similar, except for the maximum value being 
overestimated. This means the overall performance of the model was good. 

 
Figure 4. Scatter-plot of the 376 actual values and predictions. 
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 Min Max Mean Median Standard 
deviation 

True values 0 517 185.4 162.0 111.2 
Estimates 0.9 595.6 188.0 163.1 111.3 

Table 2. Comparison of the statistics of the 367 data. 

 

 Lowest Highest 
 True values Estimates True values Estimates 
Minimum 0.0 0.9 426.0 173.7 
Maximum 13.0 86.4 517.0 575.9 
Mean 3.3 14.3 455.7 335.3 
Median 0.5 5.0 439.0 311.3 
RMSE 4.3 24.5 21.3 115.1 

Table 3. Comparison of the statistics of the 10 extreme true and estimated values. 

 
Table 3 provides the statistics of the 10 extreme values. The performance of the 10 lowest 
estimated values could be acceptable except the presence of one data point, which had an estimated 
value of 86 but the true value was 0. This dramatically increases both the mean and the RMSE of 
the estimation. The performance of the 10 largest estimated values was not acceptable. It 
overestimated the maximum value and underestimated the minimum value. 
 

 Actual error Absolute error Relative error (%) Error square 

Minimum 210.3 0.0 0.0 0.0 

Maximum -252.3 252.3 613.8 63634.0 

Mean 2.6 48.9 37.8 4532.9 

Median 5.0 34.5 23.1 1187.6 

Table 4. Error measurements of the 376 data. 
 
Table 4 shows the performance of the method in terms of various error measures: actual error 
(estimates minus true values), absolute error, relative error, and error square. The RMSE was 67.3. 
All the mean errors were large, except the actual error. This shows that there was no significant 
bias in the estimator. The same message can be demonstrated in Figures 5 and 6. In Figure 5, there 
is no clear correlation of the actual error and the true values. Figure 6 shows that the error 
distribution was approximately normal with mean value centred around the zero point. In other 
words, they were independent. Figures 7 and 8 also show the rainfall predictions and their error 
values at the 367 locations. Figure 8 shows that there is no significant trend of the spatial 
correlation of the error values. 
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Figure 5. The results of the bias in errors and correlation of errors. 
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Figure 6. Histogram of estimation errors (estimates minus true values). 
 

The overall performance of the DFFE method in this case study was acceptable in terms of the 
statistics of the 367 predictions. The method did not seem to have any bias. The method, however, 
could not be appropriate to predict the extreme values. The method has the advantages of being 
fast in speed and does not even require solving simultaneous equations as in geostatistical kriging. 
It requires the specification of the functional parameters via cross-validation (e.g. by the use of 
genetic algorithms) or some a priori choice. It is suitable for multiple-inputs and multiple-outputs 
studies. The proposed method also incorporates the concept of flexible overlapping partition 
surfaces. This is particularly useful when it is desirable to incorporate interpretive knowledge 
based on a more complex understanding of the data. The use of overlapping partition is important 
in cases where the intrusive contact of a boundary is not clear. In such a situation, it would be 
reasonable to incorporate fuzzy logic techniques for the surface to show limited continuity, rather 
than a sudden break across the boundary of the independent partition regions. 
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Figure 7. The distribution of the rainfall estimates. The 10 largest and the 10 smallest values are 
shown by “□” and “ο” respectively. 

 

 

Figure 8. The distribution of the rainfall estimation errors (estimates minus true values). Light 
color (<0), deep color (>0) 
 

5. CONCLUSIONS 
In this paper, we present the use of a dynamic fuzzy-reasoning–based estimator (DFFE) in 

predicting rainfall measurements in a case study in Switzerland. The functional parameters are 
optimised using genetic algorithms. The results of this study show that ODFFE is suitable for 
estimating the overall statistics of the predictions, but not the extreme values. The method, 
however, has many advantages. It is suitable for handling multi-dimensional inputs and outputs. 
The proposed method also incorporates the use of overlapping polygons, which is an effective way 
to incorporate expert judgement on neighbourhood searching. 

Generally speaking, the ODFFE should be a flexible estimation technique especially when 
the number of additional variables increase in Equation (1), since it uses a multiple, adaptive 
dimensional fuzzy rule base inference method and fully incorporates spatial variability among data 
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points. In addition, the ODFFE does not require a structured knowledge base; it has lots of freedom 
in choosing the fuzzy membership functions and the fitness function of genetic algorithms. These 
provide us with great flexibility to design systems for different applications according to different 
requirement without changing the dynamic knowledge base creator. Therefore, the ODFFE is more 
adaptive to long term management of the systems. 

It is important to note that (a) partition of the whole region into overlapping sub-regions 
(Figure 3) is highly based on the observed rainfall data or expert knowledge. The different partition 
of the region will obtain very different results. (b) Selection of membership functions (Equations 5 
and 6) are totally subjective, but not sensitive to results when using GAs to optimise their 
parameters. (c) Selection of fitness functions (Equations 7 and 8) is also subjective, but the final 
predicting results are not  sensitive to the choice of fitness functions. (d) Selection of 
defuzzification scheme (Equation 9) is subjective, too, but is not sensitive to the final predicting 
results. 
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Abstract: This paper constructs fuzzy rule bases with the aid of a Self-organising Map (SOM) 
and Backpropagation Neural Networks (BPNNs). These fuzzy rule bases are then used to perform 
spatial interpolation on the 367 rainfall data in Switzerland based on the information found in the 
nearby 100 locations. The SOM is first used to classify the data. After classification, BPNNs are 
then use to learn the generalization characteristics from the data within each cluster. Fuzzy rules 
for each cluster are then extracted. The fuzzy rules base are then used for rainfall prediction. 
 
Keywords: Spatial interpolation, artificial neural networks, self-organising map, backpropagation 
neural networks, fuzzy rule extraction. 
 

1. INTRODUCTION 
Artificial Neural Networks (ANNs) have emerged as an option for spatial data analysis 

(FRIEDMAN, 1994; LEE et al., 1998). The observation sample that is used to derive the predictive 
model is known as training data in an ANN development. The independent variables, or the 
predictor variables, are known as the input variables and the dependent variables, or the responses, 
are known as the output variables.  

In supervised learning (KARTALOPULOS, 1996), an ANN makes use of the input variables 
and their corresponding output variables to learn the relationship between them. Once found, the 
trained ANN is then used to predict values for the output variables given some new input data set. 
For unsupervised learning, an ANN will only make use of the input variables and attempts to 
arrange them based on their properties, hopefully in a way that is meaningful to the analyst.  

ANN analysis is quite similar to statistical approaches in that both have learning algorithm 
to help them realise the data analysis model. However, an ANN has the advantages of being robust 
with the ability to handle large amounts of data. Novice users can also easily understand the 
practical use of an ANN. An ANN also has the ability to handle very complex functions 
(CHERKASSKY et al., 1994). The main limitation of using ANN is that the data analysis model built 
may not be able to be interpreted. 

Fuzzy logic is also becoming popular in dealing with data analysis problems that are 
normally handled by statistical approaches or ANNs (KOSKO, 1997). However, conventional fuzzy 
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system systems do not have any learning algorithm to build the analysis model. Rather, they make 
use of human knowledge, past experience or detailed analysis of the available data by other means 
in order to build the fuzzy rules for the data analysis. The advantages of using fuzzy system are the 
ability to interpret the analysis model built and to handle vagueness and uncertainty in the data. 
The data analysis model can also be changed easily by modifying the fuzzy rule base. The major 
limitation is the difficulty in building the fuzzy rules due to lack of learning capability. 

ANNs and fuzzy logic are complementary technologies in designing an intelligent data 
analysis approach (WILLIAMS, 1994). That suggests combining the two (NAUCK, 1995). For 
example, fuzzy logic could be used to enhance the performance of the neural network. In another 
approach, a neural network and fuzzy system could be integrated into a single architecture. 
However, a human analyst may still have difficulties understanding the analysis model computed. 
Analysis of the prediction model is also very time consuming. Therefore, it is one of the prime 
objectives of this paper to find a better way of combining the advantages of the ANN and fuzzy 
logic such that these particular problems can be overcome.  

2. NEURAL FUZZY SPATIAL INTERPOLATION 
ANN and fuzzy logic are complementary technologies for the designing of spatial 

interpolation tools. However, there are many ways that the combination can be implemented 
(NAUCK, 1995). Table 1 shows the different ways that ANN and FL can work together. It is 
important to observe the characteristics under each class so as to determine the appropriate 
technique that the analyst will be comfortable with. 

 

Techniques Description 
Fuzzy Neural Networks Use fuzzy methods to enhance the 

learning capabilities or performance of 
ANN 

Concurrent Neuro-Fuzzy ANN and Fuzzy systems work together 
on the same task without any influence 
on each other 

Cooperative Neuro-Fuzzy Use ANN to extract rules and then it is 
not used any more 

Hybrid Neuro-Fuzzy ANN and Fuzzy are combined into one 
homogeneous architecture 

Table 1: Different ways to combine ANN and fuzzy logic 
 

The Cooperative Neuro-Fuzzy technique is selected as the more appropriate technique to 
be used in this application. The reasons are as follow. As the BPNN can generalise from the data 
through some learning algorithm, the spatial interpolation function could be realised automatically. 
This will also enable the fuzzy rules to cover the whole universal of discourse, so that they can be 
used to approximate data that are not present in the training set. As fuzzy rules are closer to human 
reasoning, the analyst could understand how the interpolation model performs prediction. If 
necessary, the analyst could also make use of his/her knowledge to modify the interpolation model. 

2.1 Self-organising Map (SOM) 
In most spatial analysis, the first step is to classify the available data into different classes 

so that the data are split into homogeneous sub-populations (LEE et al., 1998; et al., 1998; FUNG et 
al., 1997). The objective in this step is to make use of an unsupervised learning algorithm to sub-
divide the whole population. Self-organising Map (SOM) is selected for this purpose mainly 
because it is a fast, easy and reliable unsupervised clustering technique. 
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SOM is designed with the intention to closely simulate the various organisations found in 
various brain structures and has a close relationship to brain maps (KOHONEN, 1990; KOHONEN, 
1995). Its main feature is the ability to visualise high dimensional input spaces onto a smaller 
dimensional display, usually two-dimensional. In this discussion, only two-dimensional arrays will 
be of interest. Let the input data space ℜn be mapped by the SOM onto a two-dimensional array 
with i nodes. Associated with each i node is a parametric reference vector mi=[µi1,µi2,… ,µi2]T ∈ 
ℜn, where µij is the connection weights between node i and input j. Therefore, the input data space 
ℜn  consisting of input vector X=[x1,x2,..,xn]T, ie   X ∈ ℜn, can be visualised as being connected to 
all nodes in parallel via a scalar weights µij.  The aim of the learning is to map all the n input 
vectors Xn onto mi by adjusting weights µij such that the SOM gives the best match response 
locations. 

SOM can also be said to be a nonlinear projection of the probability density function p(X) 
of the high dimensional input vector space onto the two-dimensional display map. Normally, to 
find the best matching node i, the input vector X is compared to all reference vector mi by 
searching the smallest Euclidean distances || X – mi ||, signified by c. Therefore, 

  ||}{||minarg ii
mXc −=       (1) 

or 

  ||}{||min|||| iic mXmX −=−      (2) 

During the learning process, beside the node that best matches the input vector X is 
allowed to learn, those nodes that are close to the node up to a certain distance will also be allowed 
to learn. The learning process is expressed as: 

  )]()()[()()1( tmtXthtmtm iciii −+=+     (3) 

 
  where t is discrete time coordinate 
  and hci(t) is the neighbourhood function 
 

After the learning process has converged, the map will display the probability density 
function p(X) that best describes all the input vectors space. At the end of the learning process, an 
average quantisation error of the map will be generated to indicate how well the map matches the 
entire input vectors Xn. The average quantisation error is defined as: 

  ∫ −= dXXpmXE c )(|||| 2      (4) 

After the 2-dimensional map has been trained, the reference vectors that were used in the 
nodes of the map can be also obtained. In spatial interpolation, the reference vector will be the 
node center consists of the input variables (x, y) and the output variable (z). However, the output 
feature is of interest from the neighbouring location, we propose here to construct the clustering 
boundaries based on the output reference vector of the nodes. The rule of thumb for deciding on 
the clustering boundaries is to examine the distance measure between the neighbouring reference 
values. If the distance measure between the present reference node and the neighbouring nodes is 
high, that suggests another cluster. 

2.2 Backpropagation Neural Network (BPNN) 

After the set of available training data has been sub-divided, BPNNs are trained in each 
cluster to predict only data within the cluster. Therefore, if the SOM identified c clusters, then c 
BPNNs need to be trained. When a BPNN (RUMELHART et al., 1986) is used in spatial analysis, 
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the observations obtained from the neighbouring are used as the training data, thus it is a 
supervised learning technique. The input neurons of the BPNN in this case correspond to the x and 
y position coordinates, and the output neuron is assigned to z, the rainfall measurement. The BPNN 
has a number of layers. The input layer consists of all the input neurons and the output layer just 
the output neuron. There are also one or more hidden layers. All the neurons in each layer are 
connected to all the neurons in next layer with the connection between two neurons in different 
layers represented by a weight factor.  

The objective of training the BPNN is to adjust the weights so that the application of a set 
of inputs interpolates the output. When BPNN performs learning, a calculation is done to obtain 
the actual output set by proceeding in order from the input layer to the output layer. At the output, 
the total error on each output neuron, which is the sum of squares of the differences between the 
desired output and the computed output is calculated. This value is used in a learning algorithm to 
update the weights and the process is back propagated through the network. In order to avoid the 
BPNN from memorising, cross validation is used to ensure its generalization capability. 

Once the modification of all the connection weights is done, a new set of outputs can be 
computed and subsequently a new total error will be obtained. This back-propagated process 
repeats until cross validation technique determines the best generalization point. At this stage, the 
BPNN is considered to have learned the function. After the BPNN has learned and generalised 
from the training data, it is then used to construct the fuzzy rules bases. 

2.3 Fuzzy Rule Extraction 
As all the BPNNs have generalized from the training data, the next step is to extract the 

knowledge learned by the BPNNs. In this case, it is the same as the previous section, we will have 
to extract c fuzzy rule bases. The following algorithm outlines the steps in extracting the fuzzy 
linguistic rules for one BPNN. 

As we have to extract fuzzy rules that can cover the whole universal of discourse in order 
to cover the whole sample space as seen by the BPNN, for T membership functions or linguistics 
terms, we would have T2 fuzzy rules as we have only two variables (x, y) in this case. 

We randomly generate input variables that could cover all the possible input space as seen 
by the BPNN and input it into the BPNN to obtain the rainfall measurements predicted by the 
BPNN. 

For the two inputs (x, y), the BPNN generates input (x, y)-output (z) data pairs with n 
patterns: 

);,( 111 zyx  

);,( 222 zyx  

 

);,( nnn zyx  

The number of linguistics terms T used in this fuzzy rule extraction has to be the same as 
the predetermined one when generating output from the BPNN. The distribution of the 
membership functions in each dimension of the domain in this case is evenly distributed. For ease 
of interpolation and computational simplicity, the shape of the membership functions used in this 
rule extraction technique is triangular. In this case, we will obtain for every Xx ∈ , 

]1,0[: →XAt       (5) 

 

M
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After the fuzzy regions and membership functions have been distributed, the available 
input-output pairs will be mapped. If the value cuts on more than one membership function, the 
one with the maximum membership grade will be assigned to the value: 

max)],(:max)(max),,([ , z
n

y
n

x
n

n BzAyAxR ⇒    (6) 

After all the input-output values have been assigned a fuzzy linguistic label, Mamdani type 
fuzzy rules are then formed (MAMDANI and ASSILIAN,1975). 

After the fuzzy rules base corresponding to the BPNN for a class have been constructed, 
the BPNN is not used anymore when performing spatial interpolation. With this set of fuzzy rules, 
a human analyst can now examine the behaviour of the interpolation. Changes and modification 
can then be performed if necessary. The fuzzy rules extracted can also handle fuzziness in the data 
and thus may improve the performance of the spatial interpolation. Figure 1 shows the block 
diagram of establishing the spatial interpolation model and Figure 2 shows the block diagram of 
performing the spatial interpolation. 

3. RAINFALL PREDICTION 
In this case study, the data available from the Spatial Interpolation Comparison 97 

(DUBOIS, 1998) is used. The data is collected on 8th May 1996 in Switzerland. 100 data locations 
are used as the training data and the other 367 locations data are then used to verify the prediction 
accuracy of the established spatial interpolation model. The two input variables used in this case is 
the 2D coordinate position (x, y); and the output used is the rainfall measurements (z). The digital 
elevation model (DEM) (v) is also available but was not used in the case study. The 100 training 
data points are fed into the SOM for unsupervised clustering. After clustering, the vector map for 
the output (z) is as shown in Figure 3. In this case study, we have use 10 by 10 two-dimensional 
map. 10 by 10 map was selected by examining the average quantisation error. After performing the 
cluster boundaries determination, the classes are formed as shown in Figure 4. 

 
Figure 1: Establishing the spatial interpolation model 
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Figure 2: Performing spatial interpolation from the fuzzy rules bases 
 
 

 0 1 2 3 4 5 6 7 8 9 
0 49.07 68.49 101.39 146.15 195.26 251.58 278.66 346.97 305.80 248.81 
1 68.98 119.63 127.22 132.80 202.07 216.55 313.67 325.59 285.68 216.18 
2 170.97 147.21 176.29 198.65 147.32 101.23 264.75 303.90 231.52 146.79 
3 125.29 155.71 156.49 138.93 145.27 221.58 351.26 352.78 242.52 117.42 
4 126.69 125.32 137.97 110.82 122.38 250.33 321.66 348.32 166.78 120.25 
5 130.86 119.28 118.82 77.96 111.27 164.85 282.00 365.54 340.93 171.91 
6 124.37 131.55 80.91 84.45 61.10 143.53 207.36 356.25 265.77 197.01 
7 184.45 288.04 179.71 64.20 90.60 142.81 274.69 452.64 302.09 165.12 
8 271.93 311.74 283.21 161.43 81.58 127.68 116.04 346.14 291.78 157.07 
9 205.36 270.88 226.25 56.87 67.34 90.67 107.63 262.06 318.77 268.53 

Figure 3: The SOM vector map for rainfall measurement 
 

 0 1 2 3 4 5 6 7 8 9 
0  Class 1    Class 6   
1           
2           
3           
4  Class 2       Class 8 
5           
6      Class 4 Class 7  
7    Class 5      
8  Class 3        
9           

Figure 4: The cluster boundaries on the SOM 2-dimensional map 
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Before being input into individual BPNNs, the data needs to be normalized between 0 and 
1. Linear normalization is used with maximum and minimum vales unique to the class. In this case, 
the SOM identified a total of 8 classes. After the data has been normalized, 8 BPNNs are trained to 
handle their own sub-populations. 

After examining the maximum and minimum value of each class, the appropriate number 
of membership function used is determined to be 7. In this case, the number of fuzzy rules 
extracted for each BPNN (each class) is 49, i.e. 72. Part of the fuzzy rules used in class 1 are shown 
in Figure 5, where EL is extremely low, VL is very low, L is low, M is middle, H is high, VH is 
very high, and EH is extremely high. With the distribution information for each linguistic term, the 
user can easily understand the set of fuzzy rules and understand how the prediction is performed. 
 
If x= EL and y= EL then z= VL  

If x= EL and y= VL then z= VL  

If x= EL and y= L  then z= VL  

If x= EL and y= M  then z= VH  

If x= EL and y= H  then z= VH  

If x= EL and y= VH then z= M  

If x= EL and y= EH then z= EL  

If x= VL and y= EL then z= H  

If x= VL and y= VL then z= H  

If x= VL and y= L  then z= L  

If x= VL and y= M  then z= M  

If x= VL and y= H  then z= VH  

If x= VL and y= VH then z= H  

If x= VL and y= EH then z= VL  

If x= L  and y= EL then z= VH  

Figure 5: Part of the fuzzy rules used to predict class 1 rainfall. 
 

After all the 8 fuzzy rule bases have been constructed, the rainfall for the 367 locations in 
the testing set can then be interpolated. The minimum, maximum, mean, median and standard 
deviation of the 367 observed data and the interpolated data are tabulated in Table 2. The ten 
highest and lowest values of the predicted Z are shown in Table 3. The relative mean absolute error 
(MAE), root mean square error (RMSE), the correlation measure, and the relative error between 
the predicted and observed rainfall are shown in Table 4. Figure 6 gives a cross plot of the 
predicted rainfall and the observed rainfall.  
 

 Observed Z Predicted Z 
Min 0 12 
Max 517 467 
Mean 185 194 
Median 162 163 
Standard deviation 111 110 

Table 2: Comparison between observed and predicted rainfall 
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10 lowest value 10 highest value 
Observed Predicted Observed Predicted 

0 12 517 467 
0 29 503 446 
0 31 493 375 
0 45 445 360 
0 72 444 395 
1 51 434 393 
5 13 434 341 
6 13 432 375 
8 12 429 378 

13 13 415 405 

Table 3: The ten highest and lowest values. 

 

MAE 53.86 
RMSE 72.95 

Correlation Measure 0.784 
Relative Error 0.31 

Table 4: Error measures between the predicted and observed rainfall. 
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Figure 6: Plot of the 367 predicted rainfall and the observed rainfall.  

(Note: The x-axis is the observed rainfall and the y-axis is the predicted rainfall) 

4. CONCLUSION 

In this paper, a spatial interpolation technique has been used to predict rainfall in 
Switzerland. This technique uses SOM to perform clustering so as to sub-divide the whole sample 
space into homogenous sub-populations. After the classification boundaries have been identified, 
the whole training data set is then sub-divided into the respective classes. BPNNs corresponding to 
each individual class are then trained using the cross-validation approach. After all the BPNNs 
have been trained, fuzzy rule bases for each class are then constructed. The case study used has 
shown that this method can produce reasonable rainfall prediction. The advantages of using this 
technique are as follows. First it makes use of the robustness and learning ability of the ANN to 



 221

sub-divide and generalize from training data. After which, the learned underlying function is then 
translated into fuzzy rules. With the use of fuzzy rules, the interpretability and the ability of 
handling vagueness and uncertainty has enhanced the interpolation model. Most important of all, 
this technique put forward a self-learning and self-explained spatial interpolation technique. The 
next phase of this research will emphasize examining the human understandable fuzzy rules in 
improving the prediction results. 
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Abstract: This paper proposes a methodology on the use of machine learning algorithms for the 
analysis of spatial data which aims to avoid any bias. Four different machine learning algorithms 
are discussed, namely multilayer perceptrons (MLP), mixture of experts (ME), support vector 
regression (SVR) and a local version of the latter (local SVR). Their learning capacity, that is the 
performance of the algorithms when they are applied to new data, will be discussed. Evaluation 
criteria based on geostatistical methods are also presented in order to compare adequately different 
models applied to a unique dataset. The algorithms are confronted to the SIC97 data set and the 
obtained results are analysed.  
 
Keywords: Machine learning, evaluation methods, artificial neural networks, support vector 
machines, mixture of experts, local models, geostatistics, non-stationarity. 
 

1. INTRODUCTION 
During the last decade, machine learning algorithms, such as artificial neural networks, 

have been extensively used in a wide range of applications. They have been developed for 
classification, regression, and density estimation tasks (see BISHOP (1995) for a good overview). 
As a matter of fact, many fields of research involving feature extraction or data prediction have 
been using some machine learning methods, with more or less success. These methods have more 
recently been also involved in the analysis of spatial data (i.e. KANEVSKI et al., 1996; DE 
BOLLIVIER et al., 1997) but generated poor results when compared to those obtained by 
geostatistical methods. A possible explanation might come from the «black box» aspect of most of 
these algorithms: finding out why a given model has produced a given answer, except in a 
statistical sense, is often a complex task. The tuning of the parameters that are required by these 
algorithms can also be very difficult and, without a clear methodology based on statistical learning 
theory (VAPNIK, 1995) and some prior information about the data, it will often lead to a poor 
performance. As a result, more well-known and/or simple methods are still preferred in spatial 
statistics. Nevertheless, when simple methods do not give reasonable results for a given problem, 
or when there is a lack of knowledge about the studied phenomenon, machine learning algorithms 
can still be considered in order to expect better results. The cost is that one is loosing some 
interpretability of the underlying models. 

In this paper, the application of machine learning algorithms to such spatial data problems 
is investigated and a case study will illustrate their use. Four methods are compared: multilayer 
perceptron (MLP), support vector regression (SVR), mixture of experts (ME), and a local 
adaptation of support vector regression (local SVR). The last is based on a modified training 
procedure of the original algorithm which can adapt itself to local phenomena, in a similar way to 
the approach proposed by DE BOLLIVIER et al. (1997) for local multilayer perceptron. 
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The following section introduces briefly the four above mentioned methods. The 
methodology used to select the values of the hyper-parameters of all machine learning algorithms 
in order to avoid any bias is then discussed. The reader will find in the third section a general 
methodology to evaluate the quality of a model with respect to geostatistical requirements, 
showing which criteria are useful and for what purpose, and which algorithm might be the best to 
optimise such criteria. The four machine learning algorithms will then be applied to the SIC97 
daily rainfall data set and the results are compared.  

2. PRESENTATION OF SOME MACHINE LEARNING ALGORITHMS 
The reader will be introduced in this section to some of the most popular machine learning 

algorithms. We first present the most well-known method, namely the multilayer perceptron, as 
well as an extension of it, the mixture of experts, which is able to handle non-stationarity problems. 
A regression extension of the recently developed but powerful classification method of support 
vector machines, the support vector regression, is then presented. The last algorithm is a local 
adaptation of the latter. 

2.1. Multilayer perceptrons 
A multilayer perceptron (MLP) is a particular architecture of artificial neural networks, 

composed of layers of non-linear but differentiable parametric functions. For instance, Figure 1 
shows an MLP with one input layer of size 4, one hidden layer of size 5 and one output layer of 
size 2.  

 

Figure 1: The architecture of an MLP 

 
Alternatively, an MLP can be written mathematically as follows 1: 
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where the estimated output f(x, θ) is a function of the input vector x (indexed by its M values xm), 
and the parameters {θ : wn, wnm, bn, b ∈ R; with n ∈[1,N], m ∈ [1,M] } to be found by a learning 
procedure. This MLP is thus a weighted combination of N hyperbolic tangents of weighted 
combinations of the input vector. Given a criterion Q to minimise, such as the mean squared error, 
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between the desired output yi  and the estimated output f(xi, θ), for a given training set of size l, one 
can search for parameters θ that minimise such criterion using a gradient descent algorithm 

                                                 
1 The equation is given here for only one output to simplify the notation 
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(RUMELHART et al., 1986). This algorithm is based on the computation of the partial derivative θ∂
∂Q  

of the criterion Q with respect to all the parameters θ of f(x, θ). The gradient descent can then be 
performed using 

θ
λθθ

∂
∂⋅−= Q  

for each parameter θ where λ is the learning rate. It has been shown that given a number of 
hyperbolic tangents N sufficiently large, one can approximate any continuous function using such 
MLPs (HORNIK et al.,  1989). 

2.2. Mixture of Experts 

 
Figure 2: The architecture of a mixture of experts. 

 
A mixture of experts (JACOBS et al., 1991) is a very simple model that embodies the divide-and-
conquer principle: instead of trying to fit a unique model to a whole training set, one supposes that 
dividing the training set into many smaller training sets could simplify the problem. Therefore, the 
underlying idea of a mixture of experts is to simultaneously (a) learn how to cut a training set into 
different parts2 and (b) learn a different model on each part. As shown if Figure 2, in its simplest 
form, a mixture of experts is composed of N modules, each receiving the same inputs, and each 
trying to produce the desired target as output. An additional module, the gater, receives the same 
input as well but has N outputs corresponding to the probability of each module to give the correct 
target. It consequently computes a soft partition of the input space. More formally, for each 
input/output point (xi,yi), each model mn is computing E(yi | xi, mn), the expectation of the output yi 
given the input xi, and the gater is computing P(mn | xi), the probability of model mn given the input 
xi. The overall output of the mixture of experts is then  
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with the constraint that 
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2 As it will be seen with the equations, instead of attributing an example to one and only one model, each 
model will see every examples but with a different weight for each example. 
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In the particular case where the gater and the models are represented by differentiable parametric 
functions such as multilayer perceptrons3, the whole system can be optimised jointly by 
minimising an overall criterion Q such as the mean squared error (cf. section 0) over the whole 
training set. For parameters θ of a given model mn, the derivative of the criterion with respect to the 
parameters is as follows 
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and for parameters θ of the gater, the derivative is as follows 
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Finally, it is important to note that, if one does not have to decide the partition of the training set, 
one still has to decide the number of such partitions. This can be done using for instance a cross-
validation technique, as described in section 3 on Model Selection. 

2.3. Support Vector Regression 

 

Figure 3: SVR linear regression with ε-insensitive loss function 
 

Directly derived from Vapnik and Chervonenkis' Statistical Learning Theory (VAPNIK, 
1995), Support Vector Machines (SVM) were developed for classification problems during the 
beginning of the 90's (a good overview of SVMs can be found in BURGES (1998). Later, the 
algorithm was extended to deal with regression problems. This new algorithm was thus named 
Support Vector Regression (SVR) (SMOLA and SCHÖLKOPF, 1998), and is presented briefly 
hereafter. 

For a given set of data ( ) liii y ≤≤1,x , nR∈x and R∈y , the simplest linear SVR algorithm 
tries to find the function 
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3 Note that in order for the gater to output probabilities, some special output function should be used to 

ensure the necessary constraints, such as the well-known softmax function 
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by minimising the quadratic optimisation problem 
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where Q(z) = max{0,|z|–ε} is the ε -insensitive loss function proposed by Vapnik and does not 
penalise errors less than ε ≥ 0 (cf. Figure 1). After some reformulation and taking into account the 
case of non-linear regression, the optimisation problem is then transformed into the minimisation 
of 
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where *, ii αα  are Lagrange multipliers, solutions of the optimisation problem, C is the soft margin 
parameter, representing the amount of noise in the data, and k(xi,xj) is a kernel function, defining 
the feature space in which the optimal solution of the problem will be computed in order to handle 
non-linear problems. An example of such kernel is the Gaussian Radial Basis Function (RBF) 
kernel 
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which has been used throughout this work. Finally, to estimate a new point, the following function 
was used 
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where b is a bias computed as follows: 
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and the Nisi ≤≤1 ,  are the indices of the data points for which either *or  
ii ss αα  is non zero. Those 

points are called support vectors (black squares in Figure 3). 

2.4. Local SVR 
As proposed by BOTTOU and VAPNIK (1992), when the data set is clearly non-evenly 

distributed, one can improve the performance of machine learning algorithms significantly by 
building multiple local models instead of one global model. Since environmental data are often 
influenced by various local phenomena, the idea of using local models applied to geostatistical 
problems was also developed for classical geostatistical interpolation methods, such as ordinary 
kriging (HAAS, 1990). 

In this section, we propose the use of a local method based on SVRs with an approach that 
is similar to the one presented in DE BOLLIVIER et al. (1997) for spatial interpolation with MLPs. 
The proposed algorithm builds a SVR model for each point to be estimated, taking only a subset of 
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the training points into account. This subset is chosen on the basis of the Euclidean distance 
between the testing point and the training point in the input space. For each testing point, a new 
SVR model is thus learned using only the training points lying inside a user defined radius which 
centre is the current testing point. The radius can be chosen using the a priori spatial correlation of 
the dataset, or like any other hyper-parameters, i.e. by cross-validation (see section 3 for an 
introduction to cross-validation). One can also use an anisotropic neighbourhood, such as an 
ellipsoid, instead of a circle. Hence, one can «force» the local model to adapt itself to an 
anisotropic phenomenon. 

A problem related to local SVR estimation, besides the computational time needed to 
create all the local models, is the number of training points used by each local model. A small 
search radius may find only few or even no training points. Theoretically, the SVR algorithm can 
work even with only two training points (with input vectors in two dimensions) but, because of 
numerical instabilities during the optimisation, it is safer to estimate an SVR model with at least 
four training points. In case this requirement is not fulfilled, a simple mean value or an inverse 
distance method should be used instead. On the other side, one may find so many training points if 
one uses a large search radius that the computational time becomes unacceptable. Therefore, a right 
balance between these two extreme situations has to be found. One should also be aware of the fact 
that testing points that are located close together will probably have the same neighbours in the 
training set; consequently one model only will be necessary to make prediction at these points. 

3. MODEL SELECTION 
Most models proposed in the machine learning literature, such as those proposed in this 

paper, have some hyper-parameters that need to be selected prior to the learning step. Hyper-
parameters are parameters of the algorithm that are defined by the user that will influence the 
training procedure. For instance, for an iterative algorithm, it could be the number of iterations; for 
a multilayer perceptron, it could be the number of hidden units; for a support vector machine, it 
could be a parameter related to the chosen kernel. In order to select these hyper-parameters 
appropriately, some kind of hyper-learning method is needed. The method will depend on the size 
of the data set: when it is large enough (usually more than a few thousands examples), a simple 
method works as follows:  

• randomly divide the data set into two parts, a training set and a validation set (the 
validation set is usually smaller than the training set, depending on the total size of the data 
set); 

• for each value of the hyper-parameter (if there is more than one hyper-parameter then, for 
each set of values of the hyper-parameters), train a model on the training set and compute 
the performance of the trained model on the validation set; 

• select the value of the hyper-parameter which gave the best performance on the validation 
set and train the corresponding model with the whole data set. 

The main idea behind this method is that hyper-parameters have to be chosen with data that 
were not used for training in order to avoid any bias. However, when the size of the data set is too 
small, which is often the case when environmental data are not collected with the help of remote 
sensing techniques, this simple method becomes too noisy and become strongly dependent on the 
arbitrary division between the training and validation sets. An extension of this method, called 
cross-validation, and which has many variants, should then be used. For the current study, the K-
fold cross-validation method has been used: 

• for each value of the hyper-parameter (if there is more than one hyper-parameter then, for 
each set of values of the hyper-parameters), estimate the validation performance of the 
corresponding model as follows: 
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− randomly divide the data set into K partitions of approximately the same size; 

− for each partition, train a model using the data from the K – 1 other partitions and 
compute the validation performance of all the examples of this partition; 

− add all validation performances to compute the validation performance of the model 
with the current value of the hyper-parameter. 

• Select the value of the hyper-parameter that produced the model that gave the best 
validation performance and train the corresponding model with the whole data set. 

One should be aware that these methods do not give a good estimate of the performance of 
the selected model on new data since all the examples have been used to select the model. When 
the generalisation performance of the selected model has to be estimated, one needs to do two 
embedded cross-validations: one to select the right model and one to estimate its performance. 
Since the goal of this study was to select a model and then give predictions on a separate data set, 
the generalisation performance has not been evaluated.  

4. MODEL EVALUATION 
Given two different models confronted to a specific problem, one should be able to define 

which one is the best suited to the given task as well as to evaluate the performances properly. One 
has therefore to describe clearly the goals that are to be achieved. In finance, for instance, the 
choice between two models that are taking decisions in financial markets can be based on the 
highest returns while taking the lowest risks. For a pattern recognition task, one could select the 
model that gives the best classification performance. 

In the following section, the goals underlying geostatistical problems will be discussed. We 
first will try to provide a mathematical formulation of each goal. The current methods used in 
geostatistics are then briefly presented. Finally, the methods used in machine learning are also 
given.  

4.1. Goals of Geostatistics 
The objective of a geostatistical case study is to provide the full conditional distribution of 

a random variable at places where observations of the variable are not available. With such an 
information, one can answer in a coherent way to many questions that are related to the statistical 
aspect of the given problem (value prediction, risk evaluation, spatial correlation reconstruction, 
etc…). Such a coherence might not be reached if one uses different methods to answer the different 
questions. The target conditional distribution of this random variable should depend on the exact 
location in the map, and eventually on extra information like a physical model or other data 
measurements that are supposed to be correlated with the main variable. 

4.2. Possible methods to evaluate the conditional distribution 
Without explaining how it could be possible to learn such conditional distribution, it is 

important to stress out how to evaluate a given conditional distribution in order to compare the 
results of many models. There are many ways one can think of in order to evaluate the quality of a 
conditional distribution. 

Let us suppose we can create a parametric conditional distribution P(Y | X; θ), where Y is 
the desired target random variable, X is the input vector (usually a two dimensional vector 
describing the position in the map), and θ is a set of parameters defining the distribution. Let also 

( ){ } liii yZ ≤≤= 1;x  be a set of test examples we can use to evaluate P(Y | X; θ). An obvious way to 
measure its quality is to compute the likelihood L that all examples in Z have been drawn from P(Y 
| X; θ): 
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and we would like L to be as high as possible. As long as X and Y are not transformed, two 
different models can then be compared using this measure. 

On the other hand, if we cannot express the full conditional distribution but only some of 
its moments M, such as its conditional expectation E(Y | X) and its conditional variance VAR(Y | 
X), then one can think of an evaluation function that would measure the quality of all of the 
available moments, such as the weighted sum 
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where ( )iij yM x|ˆ  is the jth estimated conditional moment, wj is the factor weighting the 
relativeness of this moment, and C is a value to minimise. A serious limitation of this evaluation 
criterion concerns the “true” moment values that need to be available while the maximum 
likelihood method does not need any information about the true distribution except some test 
examples. 

4.3. Current Methods Used in Geostatistics 
The underlying idea in geostatistics is the use of the spatial correlation to derive the 

weights used during the estimation. The spatial correlation is usually measured with the help of the 
semivariance,  

( ) ( ) ( )( )[ ]2E
2
1 hxxh +−= yyγ  

that is the variance of all pairs of examples separated by a distance h, called the lag. The 
semivariance can so be considered as an approximation of the local second order moment. The plot 
of the mean value of these variances for increasing values of h defines the spatial correlation and is 
called semivariogram. For a stationary data set, γ(h) reaches the global variance of the data set at a 
distance called the “range” outside which the data become spatially independent.  

The semivariogram provides a good representation of the information that can be extracted 
from the second moment. Geostatistical prediction methods, like kriging and stochastic 
simulations, use a model of the spatial correlation as the main input information. Afterward, the 
optimisation criterion is different from one method to another: kriging is minimising the error 
variance, which is related to the optimisation of the mean squared error, while stochastic 
simulations are trying to reconstruct both the histogram and the variogram model, and thus the first 
and second moments of the data set. The weighted sum of moments, presented in section 0, can 
then be used to compare both methods, as long as one has access to the true values of the moments 
or at least a good approximation of them. 

4.4. Methods Used in Machine Learning 
The criteria used to confront different machine learning algorithms are depending on the 

categories to which belong the algorithms. In classification, one is usually interested in minimising 
the number of classification errors. In regression, two kinds of error measurements are generally 
used, which are either the Mean Absolute Error 
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or the Mean Squared Error 
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Using the MAE or MSE criterion for geostatistical problems should give very good performance in 
reconstructing the first moment but will generally underestimate the second moment. For what 
concerns density estimation, the criterion that is the most frequently used is the maximum 
likelihood which has been already described in section 4.2.  

5. CASE STUDY 
The Spatial Interpolation Comparison 97 (SIC97) challenged interested people to use the 

method of their choice to estimate 367 rainfall measurements made in Switzerland on the 8th of 
May 1986 with the help of 100 measurements and a digital elevation model (DEM) (DUBOIS, 
2001). The underlying idea of this contest was to confront different estimation methods applied to 
a variable that is usually presenting some global structure but which also fluctuates strongly over 
short distances. Such a confrontation should provide much information on the efficiency of the 
methods that could be further used to design emergency mapping systems.  

5.1. Experimental Setup 
In all experiments, the X and Y co-ordinates only were used as input information. Since 

first tests involving the DEM did not improve significantly the results of the first model tried (the 
SVR), it has not been used further to allow a fairer comparison between the different methods. 

The choice of the hyper-parameters was done by K-fold cross-validation on the training 
data, inside a user-defined set of hyper-parameters. Because the approach can become very time 
consuming when the number of hyper-parameters is high, the time being an essential factor for 
emergency mapping systems, the range in which these values should be selected has been 
restricted.  

5.1.1. MLP 

The number of hidden units (N), the number of learning iterations and the value of the 
learning rate (λ) had to be selected for the multilayer perceptrons. All these hyper-parameters are 
related to the capacity of the learning system: the more examples one has, the higher the values of 
the hyper-parameters could be. The optimal value of the parameters are nevertheless problem 
dependent and these can only be chosen with the help of cross-validations. Some simple rule of 
thumb exist to define the number of parameters (weights and bias) which is related to the number 
of hidden units since it is usually smaller than the number of training examples. Such an approach 
should be used carefully and provide only an order of magnitude of the range of the values to be 
selected with cross-validation. The number of hidden units was thus chosen in a range of 5 to 40 
and the number of iterations was chosen in a range of 100 to 1000. Moreover, instead of using a 
simple gradient descent method, a conjugate gradient method was used which takes information on 
the second order into account and does not require the selection of a learning rate λ. 

5.1.2. Mixture of Experts 

For the mixture of experts, the number of experts had to be set as well as the way to 
represent the experts and the gater. It has been decided to put most of the capacity into the gater 
and a MLP was therefore chosen with hidden units ranging from 5 to 40. The experts were then 
represented by simple linear models (weighted combinations of the inputs). The choice of the 
number of experts to be used is not an easy task since it should not only reflect the non-stationarity 
of the data, but also take into account the total number of examples in the training set. 
Consequently, the number of experts was chosen between 2 and 12. Finally, the number of 
iterations was chosen in the same manner as for the MLP experiments.  
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5.1.3. SVR 

The kernel parameter σ, which is the standard deviation of a Gaussian function, is directly 
related to the local variability of the data: the more locally variable are the data, the smaller it 
should be. In practice, this parameter should lie between half the smallest distance between two 
data points and half the highest. Values outside these boundaries are not reasonable as this would 
mean that variability is either so high that no spatial correlation can be computed or so low that no 
improvement can be expected from an increase of σ. 

Experimental results from KANEVSKI (2000) showed that the precision parameter ε is 
upper-bounded by the value of the local variability of the data, the so called «nugget level» of the 
semivariogram4. Since this level is almost zero for the SIC97 data, the optimal ε value should be 
very small with respect to data value, and a range from 0 to 50 was thus chosen. 

The soft margin parameter C is much more difficult to limit. It is related to the confidence 
we have in our data: the higher it is, the more confidence we can have in the training data. Because 
this hyper-parameter is unlimited, one usually uses various powers of 10 in order to find the 
optimal one. This way of doing might not be the most efficient one. 

5.1.4. Local SVR 

For the local SVR, one has to define the search neighbourhood in addition to the other 
SVR hyper-parameters. This neighbourhood was chosen with respect to the range and the 
anisotropy given by the semivariogram of the whole training set. The use of global parameters to 
compute local models may surprise the reader but, since only a few data were available, the 
computation of local semivariograms would have been noisy and thus irrelevant. Moreover, a local 
adjustment of the anisotropic parameter would have been far too expensive in terms of 
computation time. Therefore, since the main goal is to extract the local correlation, only the first 
lags (cf. section 0) have been used. 

5.2. Results 

5.2.1. Estimation Maps 
As shown in Figure 4, the large anisotropy of the SIC97 data set was reproduced by all the 

models and the general predictions are quite close to the original data, with a large band of low 
precipitation oriented south-west to north-east, surrounded by two medium-to-high precipitation 
areas. 

The most noticeable differences between these pictures are the very different “shapes” of 
the isolines. MLP and mixture of experts (ME) have a quite similar behaviour, with isolines 
defining some elliptic regions, while SVR’s are more circular. Such a difference is related to the 
family of functions used (hyperbolic tangent for MLP and ME and Gaussian radial basis function 
for SVR). The most surprising map is obtained with local SVR’s. While the other three figures 
show very smooth patterns, SVR’s present sharp and noisy isolines. The reason is that while MLP, 
ME and SVR are using a few tens of parameters, local SVR is using thousands (because of the 
density of the estimation grid used here). Another characteristic of the SVR map is the lack of 
continuity between adjacent isoline levels. This poor result is due to the strict limitation of the 
influence of the local models added to the small number of training data. 
 

 
 

                                                 
4 The nugget level of a data set corresponds to the value the semi-variogram would have if one would 
interpolate it to a distance of 0. This is a quite subjective value as it is impossible to compute it precisely. It 
represents the local variability of the data or measurement noise, also called “nugget effect”. 
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Figure 4: Rainfall estimations over Switzerland on a dense grid using four machine learning 
models: SVR, Local SVR, MLP and ME. Models were trained on the SIC97 dataset. The colour 
scales are common to all the pictures. 
 
5.2.2. Error maps 

The efficiency of each model in the frame of SIC97 can be analysed with the help of error 
maps (Figure 5). A first look shows that all models failed to predict some specific regions, 
probably because of a lack of information in the training data. The error maps of a family of 
models have a similar behaviour as this has already been shown with the prediction maps. One can 
therefore conclude that local SVR and ME are improving their “global” counterparts. More 
specifically, SVR is obviously unable to predict the high values. Large bands of high errors can be 
seen on its error map. If the other models are more efficient in this domain, MLP is also showing 
some regional errors, especially along the west/north-west border. Regarding local SVR and ME, 
errors seem to be less structured than those obtained with the other models.  
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Figure 5: Voronoi Polygons of the normalised absolute error of SIC97 testing data predictions. 
The normalised absolute error corresponds to the absolute error made by the predicting model 
at each location, divided by the standard deviation of the whole SIC97 data set (train + test). 
Point locations are represented by the white circles. 

 

5.2.3. Spatial Correlation 

Figure 6 compares the omnidirectional semivariogram of the original testing data to those 
obtained by the proposed models. 

One will note that all models managed to reproduce the general spatial correlation quite 
well over a large distance. However, SVR estimation is very smooth, as the reduction of the 
variance attests it. Such a reduction of the general variability is also present for the local SVR, but 
the improvement with respect to the global SVR is quite significant. This result can be surprising 
with regard to noisy aspect of the prediction map obtained by the local SVR’s. Nevertheless, this 
map shows that the high values areas are common, and the mean variance is thus low. The noisy 
aspect of the picture appears in the semivariogram as a higher nugget effect for local SVR 
compared to those obtained for the other methods. Regarding MLP and the ME, they outperform 
both SVR approaches, reproducing almost exactly the rise of the short range correlation. 

The variography of the residuals, the difference between the observed and the estimated 
value, gives also some information about the feature extraction quality of each models for the 
SIC97 data. One can notice that SVR did not manage to extract all information since the residuals 
are still strongly correlated as shown in Figure 7. The remaining correlation is not as high for the 
other methods but, since a correlation still exist, improvements of the methods are in theory still 
possible. ME is again the best of the four models for feature extraction for this data set. 

Table 1 presents the numerical results of the four models’ predictions obtained on the 
SIC97 testing data set. For each model, the RMSE and MAE, as well as other characteristics of the 
obtained values, such as the minimum and maximum values, the median, mean and standard 
deviation. The statistics of the estimated values are compared to the 367 observed values of SIC97 
which had to be estimated. 
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Figure 6: Omnidirectional semivariograms of SIC97 testing data estimations and 
residuals. The left figure shows the variograms from the four estimations, compared to the “true” 
one and to the a priori variance of the testing data. The right figure shows the variograms of the 
residuals of the four in order to compare the remaining correlation inside error maps.  
 

In addition to these results, a mixture of the results obtained by these models has been 
made. The purposed of such a mixture is to show how one can reduce the mean prediction errors 
by mixing the predictions of the various models studied. For each point where an estimation was 
requested, the prediction of all the models have been averaged.  

The last part of the table summarises the results of SIC97 as presented in DUBOIS & SHIBLI 
(2001). «SIC97 best» and «SIC97 worst» gives the corresponding results, in terms of absolute 
deviation to the real value, found by the submitted models for this specific table section (i.e. the 
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best RMSE and the best MAE do not correspond to the same model). «SIC97 median» gives the 
interval inside which the statistics of the best 50 % of the submitted models are. 

 RMSE MAE min. median max. Mean Std. dev. 

SIC97 true N.A. N.A. 0 162 517 185 111 

MLP 59 45.8 8.9 186.9 380.6 188.2 96.5 

SVR 63.4 45.9 37.5 165.6 369.6 184 77.1 

ME 53.2 38.6 0 165.3 453.8 182.5 101.7 

Local SVR 57.1 41.9 0 163 472.7 182 88.8 

Mixture of all 51.8 38.3 33.4 169.4 419.3 184.7 89.3 

SIC97 best 53.1 32 0 162 514 185 111 

SIC97 median 63 44 [-15.5;15.5] [154;170] [462.5;571.5] [181;189] [99;123] 

SIC97 worst 99 70.6 - 413 191 788 159 139.5 

Table 1: Comparison of multiple models on SIC97 data set. The models compared were multilayer 
perceptrons (MLP), Support Vector Regression (SVR), mixture of experts (ME), local SVR, and the 
mixture of all these models. These were compared to the best, the median and the worst results 
obtained in the frame of SIC97.  
 

Comparing the results obtained by the machine learning models to the general results of 
the SIC97 contributions shows that, except for SVR, all machine learning algorithms presented 
here produced estimates that are at least as good as the best methods, mainly based on geostatistics, 
used by the other SIC97 participants in terms of the mean error. However, for what concerns the 
standard deviation, this is no longer true for SVR and local SVR. Regarding the distribution of the 
estimated values, machine learning algorithms appear to be unable to reach the best values of 
SIC97 data, but the mean and the median (except for MLP) are efficiently recovered. It is 
worthwhile to note that ME gives one of the best prediction results on the SIC97 data set. 

Also interesting is the behaviour of the mixture of the four models. As it was foreseen, the 
results in terms of mean error are very good (it is even the best in terms of RMSE). But as a direct 
consequence of the optimisation of the first moment, the second one is not preserved at all: the 
standard deviation has not been improved. 
5.2.5. Conclusion on SIC97 Experiments 

SIC97 benchmark, due to its complexity, has raised some drawbacks of machine learning 
algorithms when these are applied to a geostatistical case study. While these methods were almost 
as good as other regression techniques, they were less efficient than some model-based approaches, 
like ordinary kriging. Various explanations will here be formulated on the basis of the information 
used during the learning step. Since machine learning algorithms are model free, they are very 
sensitive to «bad» data sets. If the data set is small and/or noisy, its probability distribution can be 
very far from the true probability distribution of the studied phenomenon. Under these 
circumstances, learning algorithms will have some difficulties to solve efficiently an estimation 
task if no prior knowledge on the phenomenon is used. When applied by experimented users, 
model-based methods are often less sensitive to data representativity because the model becomes 
user's prior information about the phenomenon. 
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To reduce the impact of such a problem, we have chosen to use models focusing on local 
phenomena. In the case of the local SVR, some specific knowledge on the data, like the spatial 
correlation and the anisotropy, have been used to specialise artificially the algorithm. This 
approach generated better results compared to those obtained with the standard SVR. The prior 
knowledge used for the mixture of experts was only based on the underlying idea that it should 
focus on some local phenomenon. Global information is nevertheless kept while building various 
global models locally weighted. As a consequence, it was able to extract the structure of the 
phenomenon at a larger scale than the local SVR (which is limited by its search neighbourhood) 
and gave thus a better prediction ratio, one of the best proposed on SIC97 so far. Mixture of 
Experts are demonstrating here the great potential of the adaptation of machine learning 
algorithms. 

Machine learning algorithms are thus interesting for automatic learning as they can give 
fairly good results with a very limited human action (only the choice of hyper parameters range) 
which makes it seducing for automatic mapping systems that would be required in emergency 
situations. It remains nevertheless dangerous to generalise their efficiency to any spatial problem. 
As shown in this case study, noisy or non representative data can completely destroy their 
efficiency. Since data collected in emergency situations are more likely to be uncertain than those 
obtained in situation of routine, the simplest machine learning algorithms might not be suited for 
automatic emergency mapping systems. 

6. CONCLUSION 
The results presented here attest that, when properly used, machine learning regression 

algorithms are at least as good as many more classical ones, even if support vector machines 
appear to be much more efficient for classification tasks than for regression. It has also been shown 
that machine learning algorithms can be adapted to a specific problem, such as a non-stationary 
data set. However, since machine learning algorithms are model free, these are usually more 
sensitive to non-representative data sets than model-based methods. For the same reason, machine 
learning algorithms are more adapted to medium to large data sets (1000 examples and more) than 
to small ones. 

The problem of computation time will not be discussed in depth here. Given the small size 
of the SIC97 data set, this topic was not considered relevant. Machine learning algorithms are very 
different from one another, and can have many different implementations which are more or less 
efficient in terms of computation: in this case study, the search for optimal models for each method 
varied from a few hours to a few days on UNIX workstations and the prediction at a single point 
required only a few milliseconds.  

This work has clearly underlined the need to develop new machine learning algorithms that 
are dedicated to the analysis of spatial data. Hence, such algorithms would have to optimise higher 
statistical moments of the data and not only the first one in order to be closer to geostatistician’s 
demands. 
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Abstract: The often cited optimality property of Kriging predictors, namely to yield best linear 
unbiased predictions, rests on the assumption that the covariance function (c.f.) is known exactly. 
In practice, however, a plug-in-kriging is performed, i.e. estimates of the unknown covariance 
parameters are plugged in. It is well-known that the use of estimated covariance parameters may 
lead to a serious underestimation of prediction errors. For sensible predictions, the local behaviour 
of the underlying random function must be taken into account, especially mean square continuity 
and differentiability measures characterising the smoothness of the data generating process. 

In the present paper an attempt is undertaken to quantify the inherent amount of covariance 
parameter uncertainty starting from the Matérn class of c.f.s which allows the additional 
incorporation of a smoothness parameter in a direct way. We advocate a Bayesian approach which 
not only allows the quantification of parameter uncertainty but also the evaluation of its 
consequences for prediction. The uncertainty is expressed through posterior densities of the 
covariance parameters given the observations, these densities are obtained on the basis of 
independent simulations using the empirical and fitted variograms associated with the data. The 
shape and the nature of these posterior densities are explored for the SIC rainfall data. 
 
Keywords: Plug-in-kriging, mean squared error of prediction, underestimation, Matérn 
covariance function, variogram parameter uncertainty, smoothness and differentiability, Bayesian 
prediction, predictive density, random function simulation, S+SpatialStats, posterior covariance 
parameter density, kernel density estimation 
 

1. SPATIAL LINEAR MODEL/KRIGING 
We consider the prediction problem for a random function represented as  

1,);()()( >⊂∈+= dRDxxxmxZ dε     (1) 

where m(x) stands for the mean function (trend) EZ(x) = m(x) and ε(x) denotes an (unobservable) 
random error function with expectation zero, i.e. Eε(x) = 0 for all x ∈ D. Suppose, we have 
observations at n sites x1, …, xn ∈ D  collected in an observation vector Z =(Z(x1), …, Z(xn))T. Our 
goal is to predict Z(x0) at an unobserved location x0 ∈ D by a linear predictor 
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where λλλλ = (λ1, …, λ n)T, usually, the trend function is modelled as 

βf T
rr xxfxfxm )()()()( 11 =++= ββ K     (3) 

with some given functions f1, …, fr and unknown parameter vector ββββ=(β1, …, βr), e.g. this can be a 
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low order polynomial setup. In order to determine an optimal linear predictor, i.e. optimal weights 
λ1, …, λ n, we need some additonal assumption about the second order moment structure of the 
random function but besides that no further distributional assumptions about Z(⋅) are necessary. 
Assuming that 

Cov(Z(x), Z(y)) = C (x−y)   ∀x,y ∈ D    (4) 

with some given covariance function C(⋅), which is the so-called condition of covariance 
stationarity, (1), (2) and (4) together from the well-known Universal Kriging setup. The function 
C(⋅) must be positive semidefinite in order to be a valid covariance function, i.e. it must satisfy  
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for any n ≥ 1, λλλλ  ∈ Rn and any collection of points x1, …, xn ∈ D. 

Requiring additionally that the optimal predictor be unbiased, i.e. { } 0()(ˆ
)00 =− xZxZE , 

the minimisation of (2) leads to the predictor 
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where we have used the following denotations: 
T
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and ZKFFKF TT 111 )(ˆ −−−=β . Here K and β̂  stand for the covariance matrix of the observations 
and the generalised least squares estimator of ββββ in the model (3), respectively. The best linear 
unbiased predictor (BLUP) given by (5) is known as the Universal Kriging predictor (see e.g. 
Cressie (1993)). The weak point of universal kriging and other spatial linear interpolation methods 
is, however, the fact that the BLUP-optimality property rests on the assumption that the covariance 
function C(⋅) and thus c(x0) and K be known exactly. In practice, however, a plug-in-Kriging is 
performed, which means that the unknown covariance function (c.f.) is estimated empirically and 
then fitted to some positive semidefinite c.f. model. Usually, the estimation of C(⋅) is based on the 
empirical moment estimator for the variogram 

{ } D,Dy)(x,; )()(Var  
2
1),( ×∈−= yZxZyxγ  

which, under the assumption of covariance stationarity, is related to C through the equation 
γ(x,y)=C(0) − C(x−y). Hence, instead of (5) the plug-in-kriging predictor 
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0

*
00

* ββ FZKccxfxZ TT −+= −  

is used in practice, where )(ˆ 0xc  and $K  are built on the estimated c.f. $ ( )C x y−  and 

ZKFFKF TT 111* ˆ)ˆ(ˆ −−−=β .  
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This plug-in procedure, however, leads to an underestimation of the mean squared error of 
prediction (MSEP). CHRISTENSEN (1991) showed that 
 

[ ]{ }2.
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2
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2.

0
*

0 xZxZ −=≤  

where E* means expectation w.r.t. the estimated c.f. Ĉ . 

Hence, careful modelling of covariance uncertainty is necessary to evaluate the 
consequences of possible misspecifications of C and to develop robust alternatives. For sensible 
predictions, further assumptions about the law of the random function are required. In particular, 
the local behaviour of Z(⋅) is crucial. 

2. MEAN SQUARE PROPERTIES OF RANDOM FUNCTIONS 

In this section we briefly summarize the properties of covariance stationary random 
functions that have essential influence on the mean square error properties of the plug-in predictor. 
Here the degree of smoothness of the random field is of primary importance, which, in turn, is 
determined by the analytical properties of the c.f., especially by its behaviour near the origin. 

 
 
 
The random function Z is said to be mean square continuous (m.s.c.) at the point x ∈ D 

iff  

{ } 0)()(lim 2 =−
→

yZxZE
xy

. 

Since { } { })()0(2)()( 2 yxCCyZxZE −−=−  it follows immediately that mean square continuity of 
Z(⋅) holds if and only if the covariance function C(⋅) is continuous at x = 0 , in this case Z(⋅) is 
m.s.c. at any point x ∈ D. Furthermore, Z(⋅)  is said to be mean square differentiable (m.s.d.) at 

Dx ∈  iff 

{ }||(||)||(||1 xZhxZ
h n

n

−+  

tends to a limiting (in the L2-sense) random variable, where L2 is the Hilbert space of square 
integrable functions, for any sequence { }nh  of real numbers such that hn→ 0 as n → ∞. It can be 
shown that Z(⋅) is m.s.d. at any point x ∈ D iff |C''(0)| < ∞, i.e. iff the second order derivative of the 
c.f. is finite at the origin. The 2L -limit, denoted as the derivative Z'(⋅) of the random function Z, 
has covariance function –C''(⋅). Higher order differentiability is defined accordingly: Z is said to be 
m-times (m > 1) m.s.d. iff Z(m-1) is m.s.d. at any point x ∈ D, which holds if and only if        
|C(2m)(0)| < ∞, i.e. iff the derivative of order 2m of the c.f. at the origin is finite. Roughly speaking, 
with increasing order of differentiability m the behaviour of the random field becomes more and 
more regular, i.e. m is directly related to the smoothness of Z(⋅). To determine the degree of 
smoothness, it is enough to study the behaviour of C(h) for h → 0, which can be done on the basis 
of a Taylor series expansion of C around h = 0.  
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A basic result of LUKACS (1970) states that, given the Taylor series expansion of C as h → 0 can 
be written as  
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with coefficients a0, …, am , some function g and a remainder term R for which R(h)/|g(h)| 
converges to zero as 0→h , then Z(⋅) is m-times m.s.d. Let us consider some well-known 
examples of covariance functions which are often used in practical applications, where, for the 
sake of simplicity, we omit the nugget effect. 
 

• Exponential c.f.: |)|exp()(exp hchC α−⋅=  

Here c > 0 and α > 0 stand for the sill and range parameters, respectively. The Taylor series 
expansion yields 
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Here we have m = 0, g(h) = −cα|h| and, clearly, R h g h h( )/| ( )| | |→ →0 0 as . Due to the linearity 
of Cexp at the origin, this c.f. is not differentiable at h = 0 and thus the underlying random function 
is nowhere differentiable, which is also seen from the above fact that m = 0. 
 

• Mixed exponential c.f.:   Cmixed (h) |||)|1( hehc αα −+=  

This is a mixture between a linear term and an exponential term where, again, c > 0 and α > 0. For 
a graphical illustration see Section 3 below. 
The Taylor series expansion reads  
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This results in m g h
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3 3, ( ) | |α  and R h g h( ) / ( ) → 0 .  

The mixed exponential c.f. is thus quadratic at the origin, the underlying random function is 
exactly once differentiable and behaves more regularly than in the purely exponential case. 
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• Gaussian c.f.: 0,0),||exp()( 2 >>−= chchCG αα  

The Taylor series expansion gives  
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and thus m = ∞. This c.f. is also quadratic at the origin but, contrary to the previous example, CG is 
infinitely often differentiable. Therefore, a random function having a Gaussian c.f. exhibits the 
highest degree of smoothness. It is well-known from applications that the use of a Gaussian c.f. 
often leads to serious underestimatioon of mean squared prediction errors, see e.g. STEIN (1999) 
for a detailed critical discussion. The reason for this effect is the oversmoothing caused by the 
assumption of infinite differentiability. 

 

The last two examples demonstrate another weakness in current geostatistical practice, 
namely the extensive use of empirical semivariograms. Both the mixed exponential and the 
Gaussian c.f. and thus also the corresponding semivariograms show a quadratic (parabolic) 
behaviour near the origin, but there is no empirical evidence for discriminating between simple 
and infinite differentiability! Up to now the Gaussian covariance model is the only one for 
differentiable random functions available for fitting empirical semivariograms to spatial data in 
current software packages (GSLIB, VARIOWIN, S+ Spatial Stats, SAS, sgeostat, Geostat Office, 
...). 

We conclude this section with a hint on spectral methods which offer the best route to 
studying the local behaviour of second order stationary random fields. The starting point here is the 
famous Bochner Theorem stating that C(⋅) is a valid c.f. for a covariance stationary random 
function on Rd iff it can be represented as  

C h i h S dT

R d( ) exp( ) ( )= ∫ ω ω  

with a positive finite measure S (the so-called spectral measure). The most important special case 
in applications arises when S is generated by a spectral density s(⋅), in this case one can make profit 
of the well-known inversion formula 

s i h C h dhd T

Rd( ) ( ) exp( ) ( )ω π ω= −− ∫2 , 

see e.g. YAGLOM (1987). Spectral methods have proven to give powerful results in time series 
analysis, they could prove their usefulness also in the context of spatial prediction in the future. For 
the above examples, the spectral densities take the following forms: 

• Spectral density for Cexp :   s cexp ( ) ( )ω π α α ω= + −1 2 2 1  

• Spectral density for Cmixed :  s cmixed ( ) ( )ω π α α ω= + −1 2 2 2  

• Spectral density for CG :  s
c

G ( ) ( ) exp( / )./ω πα ω α= −−

2
41 2 2  

 
Obviously, the study of the behaviour of the covariance function near the origin is equivalent to 
studying the high frequency behaviour of the spectral density as ω → ∞ . 
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3. MATÉRN CLASS OF COVARIANCE FUNCTIONS 
We will now deal with modelling of the covariance function on the basis of the highly 

flexible Matérn class, advocated in MATÉRNS (1986) monograph, and which has gained wide 
attention over the last years (see e.g. STEIN AND HANDCOCK (1993), STEIN (1999)). Besides the 
use of nugget, sill and range parameters in commonly applied models such as the spherical, 
exponential and Gaussian c.f., it incorporates a fourth parameter which allows modelling of the 
degree of smoothness of the stochastic process generating the observations. 

The four-parameter-Matérn class of covariance functions is defined by 

|)|(|)|()()( 0 hKhchchCM ααδ ν
ν+⋅=     (6) 

3
0 ),0(),,(,0 ∞∈≥ ναcc  

where δ(h) = 1 for h = 0 and δ (h) = 0 elsewhere and Kν denotes the modified Bessel function of 
order ν  (see e.g. ABRAMOWITZ and STEGUN (1965)). For the sake of simplicity, we will assume in 
the sequel that c0 = 0 (no nugget effect), and as done already before, we only consider the isotropic 
case. Then, contrary to the complicated structure of CM involving Bessel functions, the spectral 
density can be given analytically and takes the surprisingly simple form 

s cM
d( ) ( ) /ω α ω ν= + − −2 2 2      (7) 

which is valid for isotropic covariance stationary random functions in any dimension d ≥ 1. Let us 
consider some important special cases of CM. 
 

• Assuming that 
2
1+= mν  with some integer m ≥ 0, CM will be proportional to the exponential 

c.f. mulitplied by a polynomial Pm (|h|) in |h| of order m, i.e.  
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For the special cases ν = 1/2  and ν = 3/2 we obtain 
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i.e. the exponential and mixed exponential c.f. already considered in the previous section. 

 

• Assuming that ν = m + 1, where m ≥ 0 is integer valued as before, CM can be written as 
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with certain coefficients a0, a1, …, am+1 and a remainder term R(h) which only involves 
monomials in |h| of order 2(m+1) and higher. In the special case ν = 1 we obtain the Whittle 
c.f.  

                  C h c h h R h R h h const hM ( ) | | log| | ( ) ( )/| | . | | ,= + = →2 2 0 where  as  

 
wich is widely used in hydrological applications. 
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• In case of non-integer values ν, i.e. m < ν <  m +1, CM  may be represented as 
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where R(h) has the same structure as in the previous case of integer-valued ν. It can be seen 
from this representation that the Matérn c.f. converges to the Gaussian c.f. as ν tends to 
infinity: 

C h C hM G( ) ( )→ → ∞ as ν  

 
The parameter ν is directly related to the degree of differentiability: CM is 2m times differentiable 
iff ν  > m, or equivalently, 

ν > ⋅m Z iff ( )  is m times m.s.d. 

Therefore, the integer part [ν] of ν  is denoted as the degree of smoothness of  Z(·) having, c.f. CM 
(h). In case of infinite ν  we have coincidence with the Gaussian behaviour of infinite 
differentiability. The following figures give a graphical display of the Matérn c.f. for different 
values of ν and α, respectively. 

 
Figure 1: Matérn c.f. for various degrees of smoothness 
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Figure 2: Matérn c.f. for different range parameters 

 
 
It is worth noting that the recently introduced Power-Exponential Class of covariance functions 

C h c h cPE ( ) exp( | | ); , , ( , ],= ⋅ − > > ∈α α ττ 0 0 0 2    (10) 

see e.g. DE OLIVEIRA et al. (1997), DIGGLE, TAWN AND MOYEED (1998), does not provide the 
flexibility offered by the Matérn class. It is easily seen that for τ > 2 we have the correspondence 
ν = τ / 2 with the smoothness parameterν of CM , with the limiting case τ = 2 corresponding to the 
Gaussian case ν = ∞. However, CPE has no elements providing similar local behaviour as the 
Matérn class for 1 ≤ ν < ∞. In other words, using the Power-Exponential Class, there is no way for 
modelling smoothness, CPE jumps from zero order differentiability (for all τ < 2) to infinite 
differentiability for τ = 2. Thus, although the Matérn c.f. has no more parameters than the Power-
Exponential c.f., it is much more flexible. On the other hand, modelling of CM requires programs 
for the calculation of Bessel functions, e.g. the SPECFUN library (see CODY (1987)). 

4. BAYESIAN PREDICTION USING THE MATÉRN CLASS 
The Bayesian approach provides a general methodology for taking into account the 

uncertainty about parameters on subsequent predictions. This is especially important for the 
parameter specification in the covariance function. The use of the Matérn class is particularly 
promising, since, on the one hand, it is more flexible than currently used models and, on the other 
hand, the number of parameters is still manageable and these have natural and easily understood 
interpretations. 
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Following HANDCOCK AND WALLIS (1994), we prefer a reparameterization of CM as 
follows 
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which has the advantage that ν and ρ, the latter one describing the range of correlation, do not 
exhibit such an inherent dependence as is the case with ν and α in the parameterisation (6). Now, 
for evaluating the consequences of parameter estimation using a Bayesian approach we need to 
incorporate more details of the likelihood function of the observations Z than only the first and 
second order moments m(x) = f(x)Tβ and CM(h ; θ). For optimal prediction of Z(x0)=:Z0 we require 
the so-called predictive density  

∫ ∫
Θ
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B

ddpZpZp θβθβθβ )|,(),,|()|( 00 ZZZ    (12) 

of Z0 given the data. 

Here B and Θ denote the region of parameters β and θ, respectively, for trend and c.f. 
modelling. The first factor under the integral sign denotes the conditional probability density of Z0 
given the parameters and the observations, respectively, the second factor p(β,θ|Z) denotes the 
posterior probability density of the trend and covariance parameters given the data. According to 
Bayes’s theorem, this is obtained as  
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where p(Z|β,θ) and p(β,θ) stand for the likelihood function of the observations Z and the prior 
probability density of the paramters β and θ, respectively.  

In case that Z(·) is a Gaussian random function on Rd, the observation vector Z follows an 
n-dimensional normal distribution with expectation F β and covariance matrix 
( ( ; )) : ( ), , ,C x x KM i j i j n− ==θ θ1K  and the log-likelihood function reads  
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and the density p(Z0|β,θ,ΖΖΖΖ) occuring in (12) is the density of the univariate normal distribution 

N f x C c x K c xT
M M

T
M( ( ) , ( ) ( ) ( ) ( ))0 0

1
00β θ− −  

where cM(x0) = (CM (x0 – x1), …, CM (x0 – xn))T. Then, given the analytical form of the prior density 
p(β,θ), the necessary numerical integrations in (12) and (13) can be performed to yield the 
predictive density p(Z0|ΖΖΖΖ), from which all the required quantities (expected value, its mean squared 
error, ...) for the prediction of Z0 = Z(x0) and the evaluation of its uncertainty could be derived. Our 
numerical experiences in this direction will be reported in a future paper. In the sequel, we will 
deal with the specification of the prior density p(β,θ)  which summarizes our a-priori-knowledge 
about the trend and covariance parameters. 
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The first prior modelling assumption is  

p(β,θ) = p(β)p(θ); i.e. β and θ are independent a-priori.  

For p(β) we may choose subjective priors or integral-geometric priors as suggested e.g. in PILZ et 
al. (1996) and DUBOIS et al. (2000) or we may follow HANDCOCK and STEIN (1993) who assumed 
β to be locally uniform on Rr, i.e. p(β) ≡ 1. 

The modelling of adequate priors for the covariance parameters in θ = (c0, c, ν, ρ) is a 
difficult task. HANDCOCK AND WALLIS (1994) and QIAN (1997) proposed to take 

4221
0 ),0(,)1()1()()( ∞∈++⋅= −−− θρνθ ccp , 

which neglects, however, the interdependence between the four parameters. Still worse are 
“automatic solutions” such as proposed in CUI, STEIN AND MYERS (1995), who assume a chi-
squared distribution for the inverse sill and an exponential distribution for the range; against the 
latter choice I have particular objections, see the empirical results below (esp. Fig. 6). 

Our proposal is to avoid the cumbersome and dangerous (mis-)specification of p(θ) and let 
the data themselves reveal the inherent uncertainty, i.e. obtain the posterior density for θ  via 
conditional simulation to yield the joint posterior density needed in (12) according to  
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    (18) 

Thus, we suggest the following procedure for studying the inherent uncertainty in covariance 
parameter estimation, expressed in terms of the conditional posterior density of the covariance 
parameters: 
(i) Generate N simulations, conditioned on the actual observation vector 

Z = ( ( ), , ( ))Z x Z xn
T

1 K , and based on a (Matérn class) variogram fitted to the usual 
empirical variogram obtained with Z. This results in N (= 5000, say) empirical 
variograms. 

 
(ii) Fit the N empirical variograms to Matérn variogram functions, using nonlinear weigthed 

least squares approximation, to obtain N realizations of the covariance parameters  

),,,(,),,,,( 0111011 NNNNN cccc ρνθρνθ == K  

 

(iii) Calculate from these realizations the posterior density of p(θ|Z) and/or conditional and 
unconditional densities of the single components of θ (nugget, sill, range and smoothness) 
using kernel density estimation techniques. 

 
First prototype implementations of the procedure suggested above are currently underway, 

using S+ Spatial Stats (rf sim-routine) and S+ routines for kernel density estimation as provided in 
BOWMAN and AZZALINI (1997), for detailed results see BREITENECKER (2001). First graphical 
explorations for the SIC data exhibiting the uncertainty of the variogram parameters are given in 
the next section. Further work is in progress and will be reported elsewhere. The final task will be 
the implementation of numerical integration procedures to obtain the predictive density (12) on the 
basis of the posterior density (18). This requires numerical integration with respect to the regions Θ 
and B, where Θ  is four-dimensional. Thus, for a zero order trend (ordinary kriging setup) or a first 
order trend in R2, where B is one-dimensional and three-dimensional, respectively, one has to 
perform 5-dimensional or 7-dimensional numerical integrations. This is manageable with the 
currently available computational techniques, Gibbs sampling seems to be particularly promising. 
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ECKER AND GELFANDT (1998) study Gibbs sampling for the computation of the predictive density 
for a Gaussian random function with a Matérn class c.f., they use, however, unrealistic simple 
priors. DIGGLE, TAWN AND MOYEED (1998) make an important step in the direction of non-
Gaussian random functions and propose Monte Carlo Markov Chain (MCMC) methods for 
efficient computation of the predictive density. 

5. ILLUSTRATION OF VARIOGRAM UNCERTAINTY IN THE SIC DATA 
In this section we briefly summarize our first findings on the uncertainty inherent in 

variogram modeling with the SIC data. Assuming the data to be lognormally distributed with 

logmean = 0.35 and logsigma = 0.76 

we calculated, for the sake of simplicity, the omnidirectional empirical variogram (using the 
classical moment estimator) on the basis of the 100 observations and then fitted a Matérn class 
covariance function as given in (11). For comparison, we also looked at the covariance function 
model recently proposed by GAUDARD et al. (1999), 
 

CGd(h) = c0 δ (|h|)+c{α exp(-3|h|2 / a2) + (1−α) exp(-3|h| / a)} 
(19) 

]1,0[),,0(),(,00 ∈∞∈≥ αacc  

which is just a mixture between the Gaussian and exponential covariance functions, i.e. a mixture 
between the extreme cases of zero and infinite order differentiability. Again, it is by far not as 
flexible as the Matérn c.f. (cp. our discussion of the Power-exponential c.f.) but still more flexible 
than the single covariance functions. The figure below displays the results of fitting of the 
empirical variogram to the optimal Matérn and Gaudard class variograms, respectively, the optimal 
(in the sense of a nonlinear weighted least squares objective criterion) were as follows: 
     θΜ = (c0, c, ν, ρ) = (0, 1.377, 9. 240, 29.907) and θGd = (c0, c, α, a) = (0, 1.391, 0.758, 58.483), 
respectively. 

 
Figure 3. Empirical and fitted (Matérn and Gaudard) variograms 
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We remark that the residual sum of squares for the Matérn and Gaudard variograms was 
0.646 and 0.652, respectively. Also, we have to note additional sources of uncertainty about the 
variogram parameters from different empirical estimation methods (see CRESSIE (1993) and PILZ 
et al. (1996)), but also from different numerical fitting methods; it is enough to mention that with 
ordinary instead of weighted nonlinear least squares fitting we get  

θGd = (c0, c, α, a) = (0, 1.379, 0.944, 53.208), 

i.e. a small change in the sill value, a medium change in the range parameter and an already 
remarkable change in the mixture component value α! The comparably large values for α and ν in 
the Gaudard and Matérn variograms, respectively,  already point us at a rather smooth spatial 
random (rainfall) process. But, we should be aware that there is much variation associated with 
these values and a Bayesian approach to study the consequences of this variation on prediction 
might well be in order! To get a first impression of the uncertainty associated with the smoothness 
parameter we looked at the conditional densities of ν and α , respectively, for fixed combinations 
of nugget, sill and range values. In each case, we generated 1000 simulations using the rfsim-
function provided with the S+Spatial Stats package, of which we used approximately 500 
(nonlinear weighted least squares) fitted parameter values to calculate the univariate conditional 
densities for the smoothness parameters ν and α. These densities were obtained with the S+ 
routines for kernel density smoothing provided in BOWMAN and AZZALINI (1997).  

On a Pentium III machine with 650 MHz processor and 192 MB RAM, it took about 1.5 
min to generate 1000 simulations and approximately another 6 min to fit ν and α for 1000 
simulations each. 

 
Figure 4. Conditional posterior density of the smoothness parameter ν (Matérn c.f.) 
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Figure 5. Conditional posterior density of the mixture parameter α (Gaudard c.f.) 

 
 
Fig. 4 exhibits an unusual situation: In most practical applications smoothness values 

greater than one are not very likely to occur, in our situation the densities are rather flat stating that 
even values around 10 and larger receive nonnegligible probabilities. With Fig. 5 we are 
particularly left in uncertainty; although we observe higher frequencies for values near one 
(favouring the Gaussian variogram) we have also to take account of values near zero (favouring the  
exponential "counterpart"). Likewise, also the remaining parameters nugget, sill and, in particular, 
the range exhibit considerable variation. As an example, we display in Figure 6 the conditional 
posterior density of the range parameter of the Matérn c.f. for different combinations of nugget, sill 
and smoothness values. 



 251

 
Figure 6. Conditional posterior density of the range parameter ρ (Matérn c.f.) 
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Abstract: The Spatial Interpolation Comparison (SIC97) was organised as a scientific exercise 
where participants were invited to estimate 367 rainfall measurements based on measured values at 
100 locations. Its objective was not only to present the variety of approaches possible for mapping 
such data, but also to introduce the latest developments in the art and science of spatial 
interpolation. The 19 accepted papers for publication cover both standard and well known 
methods, including Inverse Distance Weighting, Ordinary Kriging, Splines, Radial Basis 
Functions, Neural Networks, Fuzzy Logic Interpolators, and even unpublished techniques such as 
Class Kriging. Several criteria were considered for gauging the accuracy of the interpolation 
methods; for example, general statistics of the estimated values were requested as well as a map of 
estimation errors, the values of the mean absolute and mean relative errors, the root mean squared 
error, and a critical evaluation of the accuracy of the methods in estimating extreme values. In 
addition to the rainfall data, a 1 km resolution digital elevation model (DEM) of Switzerland was 
also provided to the participants since topographic relief was expected to be one of the main factors 
affecting the spatial distribution of the rainfall. The results have highlighted the wide variety of 
approaches available and the importance of domain expertise in the estimation process. 
Nevertheless, the high density of the data used for the estimation allowed most of the techniques to 
generate very similar results. Therefore any conclusions on the accuracy and efficiency of the 
methods used must be made in a careful manner. In order to provide more robustness to such 
conclusions, the authors have made supplementary calculations. The parameters used by the main 
interpolator routines were refined by cross validation in order to study the influence of expert 
knowledge on the estimations. Randomly extracted subsets of the original data were used to 
analyse the performance of the methods when applied to fewer measurements. The results of these 
calculations were assessed in conjunction with those obtained in SIC97. 
 
Keywords: Spatial interpolation, emergency mapping system, automatisation. 
 

1. INTRODUCTION 
In the case of an accidental release of radioactivity to the atmosphere, one has to provide 

decision makers with maps describing the levels of the deposited radioactivity. These maps are 
essential to making the decisions required for both short and long term management of the 
contaminated territories (IAEA, 1991). Established on the basis of information collected by 
sampling networks, these maps require the conversion of punctual information, i.e. the 
measurements, into continuous information showing the radioactive levels over the monitored area. 
This step, known as spatial interpolation, will allow the expert to estimate the value taken by the 
variable at the locations where no samples are available. Mapping radioactivity under emergency 
conditions implies that results need to be obtained fairly quickly, while for long term management, 
more time is normally available for experts to prepare maps which are expected to be more 
accurate than those provided in the first few hours following an accident. Automating the spatial 
interpolation step is a very complex task since many methods exist, each having different 
advantages and drawbacks. The choice of a method depends mainly on: 
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1. the nature of the data 
2. the density and spatial distribution of the sampling points 
3. the spatial variability of the variable 
4. the initial assumptions made regarding the studied phenomena 
5. the goals of the study (description, quantification, identification of hot spots, etc) 
6. the desired level of accuracy 
7. the computing load 
8. the experience of the user 

 
(LAM, 1983; ISAAKS & Srivastava, 1989; BUCHER & VČKOVSKI, 1995). Furthermore, most of the 
methods require the definition of a certain number of parameters from which many are (often out 
of necessity) defined arbitrarily. As a result one often refers to the art of spatial interpolation and 
each map will be subject to the biases, prejudices, and experience base of the originator. 

2. EVALUATING THE IMPACT OF HUMAN FACTORS ON THE 
PREPARATION OF MAPS 

To evaluate the impact of human factors on the preparation of maps of radioactive 
deposition, a spatial interpolation comparison (SIC97) exercise was organised by the Joint 
Research Centre in 1997. Its objectives were not only to show the differences in the approaches 
and methods chosen by experts when faced with the same problem, but also to assess the 
differences in the results that would be obtained. The objective was to evaluate some of the 
available techniques and investigate their utility for quick mapping in emergency situations such as 
radioactive deposition. 

The exercise was organised on the AI-GEOSTATS mailing list (www.ai-geostats.org), in 
order to reach as many participants as possible. The participants were invited to predict values 
taken by a spatial variable at 367 different locations with the help of 100 observed samples of the 
same data set. A deadline was provided after which the true values of the 367 prediction location 
were made public. The data used was a set of 467 daily rainfall measurements made in Switzerland 
on May 8th, 1986. This data set is described in detail in this volume (DUBOIS, 2001a). The choice 
of such a variable was arbitrary, although on hindsight it provided some measure of comfort to the 
participants since rainfall (and various factors governing its distribution) would be quite familiar to 
anyone who frequently watches weather commentary on public television! Nevertheless, one can 
also easily extend the conclusions drawn from SIC97 to the problem of mapping radioactivity in 
the environment since rainfall is the main factor affecting the deposition of radioactivity released to 
the atmosphere (DOERFEL & PIESCH, 1987; DUFTSCHMID et al., 1987; PERSSON et al., 1987; 
CLARCK & SMITH, 1988; MCCAULAY & MORAN, 1989). Since the vertical relief might also have 
affected the rainfall distribution, a 1 km resolution digital elevation model (DEM) was also 
provided. As a result, 19 papers were subsequently accepted for publication in a special issue of the 
Journal of Geographic Information and Decision Analysis (DUBOIS et al., 1998). 

Even if the contributions to SIC97 have already been published elsewhere, no general 
overview on the results has been given to this date. This paper aims to summarise and comment on 
the main results obtained in order to discuss the constraints that should affect the design of any 
emergency management plan which would involve the mapping of an environmental variable. 

2.1 Organisation of SIC97 
In order to apply a consistent set of criteria in the comparison of the various contributions 

to SIC97, the participants were requested to provide the following information: 
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1. the minimum, maximum, mean, median, and standard deviation of the 367 estimated 
values; 

2. the locations of the 10 highest and 10 lowest values of the whole data set;  
3. the mean absolute error (MAE) and the root mean squared error (RMSE) of the 

predictions,  
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which respectively show the dispersion of the residuals (the difference between true 
and predicted values) around the mean; 

4. the mean, or bias, of the errors; and 
5. the correlation between the estimated and true values. 

2.2 Contributions to SIC97 
Of 48 participants who have provided us with their results, primarily due to reasons of 

space, only 19 have been selected for publication. The main criteria used for the acceptance of a 
contribution by the editorial committee was the clarity and transparency of the decision process 
and of the method used.  

The results of four unpublished contributions will also be used here for the sake of 
completeness. While most of the participants were from academia, the sheer diversity of their 
specialist subject matter indicates how widely spread spatial statistics techniques are. Such a 
variety of contributions to SIC97 also illustrates that SIC97 has been quite independent from the 
main streams of influence one frequently encounters when only one scientific discipline is 
represented. 

2.3 Methods used in SIC97 
A list of all the submissions with a short description of the methods used can be found in 

the annex. The four additional contributions have been described in more detail since these have 
not been published. In the remainder of this paper, the methods will be referred to with the name of 
the first author and the number used in the annex. Table 1 summarises all of the methods used in 
SIC97. Altogether, 36 different spatial interpolation methods have been identified from the 22 
papers summarised in this paper. 
 

Function used Tested Used for final 
results 

Geostatistics: kriging & simulations 14 8 
Artificial Neural Networks 6 3 
Splines 5 2 
Multiquadratic 2 1 
Kernel  1 1 
Hand drawn estimation 1 1 
Inverse Weighted Distance 2 1 
Mixture: kriging & Artificial Neural Networks 1 1 
Polynomial 1 1 
Maximum Entropy 1 1 
Functions based on Fuzzy Logic 2 2 

Table 1. Methods used in SIC97. 
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Table 1 indicates a clear preference for geostatistical methods, followed by those based on self- 
learning algorithms (Artificial Neural Networks) and splines. The latter, under certain 
circumstances, can be equivalent to the ordinary kriging methods. The other methods are poorly 
represented either because they are often considered as too elementary (e.g. inverse distance 
weighting, hand drawn estimation, and linear interpolation) or because they are based on recent 
developments (e.g. fuzzy logic, and maximum entropy). Other well known methods that have not 
been used in SIC97 are those based on nearest neighbour, triangulation, or polygons of influence 
(Thiessen/Voronoi). This can easily be explained by the fact that SIC97 required the estimation of 
values at points that were outside of the bounding box created by the 100 training data and such 
methods are known to generate poor results when an extrapolation is needed. One will also realise 
that the three preferred methods involved, on average, the testing of two different combination of 
parameters or variants of the main function used.  

2.4 Exploratory analysis of the 100 observed data set 
Exploratory data analysis underpins the spatial interpolation process, and even at this 

initial stage the divergence of approaches was refreshing to note. Those using parametric methods 
tried to characterise the statistical distribution of the data using familiar measures such as the 
variance, mean, and skewness, while those using self-learning algorithms have either bypassed this 
step or divided the data set into different subsets (Tables 2 and 3). The identification of different 
populations on the basis of the analysis of the frequency histograms has lead the participants to 
different conclusions. A few applied a transformation to the data in order to remove the skewed 
aspect of the statistical distribution of the data, while others made an attempt to split the data into 
different homogeneous sub-populations. The way the data were split also highlighted the different 
thought processes behind them, with most participants either using some statistical criteria or 
making use of the DEM model to identify possible subpopulations of the data. 

 
No 
transformation: 

ALI, ATKINSON, ALLARD, BRUNO, GALLO, GENTON (6 ), HUANG, 
KANEVSKY, LEE S, RAJAGOPALAN, RATY, SAVELIEV, THIEKEN, 
TOMCZAK, WENDELBERGER, ANONYMOUS 1, ANONYMOUS 2 (20a), 
ANONYMOUS 3 (21a,c), ANONYMOUS 4. 

Transformation: 
• Log Normal 
• Normal score 
• Square root 

 
• GENTON (7), LEE Y.-M.  
• ANONYMOUS 2 (20b), ANONYMOUS 3 (21b) 
• HUTCHINSON (9, 9b) 

Table 2. SIC97 participants’ choices to transform or not the data set. 
 

 
No splitting of the data set ALI, ATKINSON, GALLO, GENTON (6 & 7), 

KANEVSKY, LEE Y.-M., RAJAGOPALAN, SAVELIEV 
(15a &15b), THIEKEN, TOMCZAK, WENDELBERGER, 
ANONYMOUS 1, ANONYMOUS 2, ANONYMOUS 3, 
ANONYMOUS 4 

Splitting made with the help of 
• the relief 
 
 
• an objective statistical criteria 
• an arbitrary statistical criteria 

 
• HUANG (5 zones), SAVELIEV (15c & 15d, 3 

zones), LEE S.  (4 zones), BRUNO (2 zones), 
SAVELIEV (3 zones) 

• ALLARD (2 classes, 3 zones) 
• ATKINSON (3b, 9 classes), HUANG (5 zones), 

RATY (17 zones), 

Table 3. SIC97 participants’ choices to split or not the data set. 
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2.5 Use of the DEM 
Very few participants have taken the DEM into account to try to improve the estimations 

(Table 4). The topographic dependence was indeed difficult to identify but still existed as shown 
by HUTCHINSON (9b).  
 

Use of the DEM 
• as a rainfall 

correlated variable 
• to derive other 

correlated variables 

• GENTON (6), LEE S., HUTCHINSON (9b), 
WENDELBERGER. 

• WENDELBERGER  

Table 4. SIC97 participants’ use of the DEM. 
 

2.6 Summary of the SIC97 results 
Table 5 shows the statistics of the 367 estimates as well as the estimation errors (the mean 

absolute error, MAE, and the root mean squared error, RMSE) for all the methods used. the known 
statistics of the data set are shown at the top of Table 5. A first pass look at the leftmost column 
(the minimum estimates) indicates some negative rainfall measurements, a result of the 
interpolation process but also not reset to zero by the participant as would be a usual workaround 
for such instances.  

The statistics of the estimates which are the closest to the true values have been obtained 
by a method based on fuzzy logic (HUANG) followed by neural networks (LEE S.) and locally 
adjusted polynomial functions (RAJAGOPALAN). These three contributions are the only ones having 
four statistics on five found within the best five estimates. 

With regards purely to estimation errors, one can observe in Figure 1 that a simple 
multiquadratic function gave the best results (THIEKEN 16 b & c), although the methods based on 
geostatistics and splines also provided excellent results. This confirms the reputation of the 
robustness of these methods which have been applied in very different ways. GENTON’s (7) 
kriging, however, which is based on a different approach in the modelling of the semivariogram, 
generated a relatively higher RMSE than most of the other geostatistical methods but also the 
lowest MAE of all the methods used. As a result, the locations of 7 of the 10 highest values could 
be found while other methods found fewer points. Methods based on self-learning algorithms show 
very different results, underlining the difficulty training the artificial neural networks on data 
exhibiting high local fluctuations. However, ANONYMOUS 4 (22 d), by using a mixture of different 
training data, was able to obtain quite acceptable results. This is confirmed by results obtained in a 
similar way by GILARDI & BENGIO (2000). Although a map of proportional symbols of the 
analysed data set clearly indicated the presence of several subpopulations, the division of the data 
set into sub-data sets did not improve the estimations compared to those who have used all the 
data.  

While most methods provided good estimates of the mean value of the estimated data 
points, one can see in Figure 2 that a good approximation of the median value of the 367 samples 
seemed to have played a major role in obtaining low estimation errors, given the skewness of the 
data set. 
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Observed values at the 367 locations 
Min.        Max.         Mean           Median        Std. dev. 

 

0 517 185 162 111 
Estimation Errors 

N° Estimated values RMSE MAE 
1 36 400 192 179 88 64.0 47.0
2 21 439 181 161 86  57.4 42.2
3a -28 511 182 154 107 59.7 41.0
3b 30 490 187 162 101 60.0 42.6
4  0 486  182  161 99 57.4 39.8
5  0 435 166  145 90 71.8 50.8
6 13 450 176 150 94 72.0 50.0
7 14 433 171 151 96 62.0 32.0
8 1 596 188 163 111  67.3 48.9
9 3 454 177 159 98 56.0 39.0
9b 0 583 189 149 123 81.4 57.0
10 0 514 181 161 105 56.3 39.4
11 3 522 182 148 112 78.6 55.9
12 5 548 159 139 97  96.6 70.6
13 0 501 181 152 109  68.0 45.0
14 16 435  175 154 85 68.6  50.8
15a -40 667 186 165 112 71.0 47.9
15b 15 486 183 165 99 54.6 37.5
15c 16 528 180 154 102 61.4 41.8
15d 11 548  181 150 101 59.7 44.0
16a 14 484 182 163 96 55.7 38.8
16b 17 476 183 168 99 53.1 36.7
16c 19 491 185 165 101 53.3 37.3
17a 16 563 186 152 104 63.2 44.0
17b 0 788 185 145 127 83.9 58.5
18 0 497 184 166 98 65.2 47.8
19 -413 654 165 148 139 99.0 68.7
20a 7 540 185 154 108 66.0 46.0
20b 17 625 178 157 102 64.0 44.0
21a 20 491 183 166 97 55.4 38.8
21b 22 453 181 167 94 53.7 38.4
21c 22 486 184 162 98 55.0 38.4
22a 0 420 195 187 104 74.0 54.4
22b 27 449 184 140 114 82.5 61.4
22c 22 377 196 191 94 62.7 48.9
22d 25 435 189 164 103 54.3 39.7

Table 5. Statistics of the estimates and associated mean errors. The 5 best estimations of the 
statistics and the 5 lowest errors are highlighted with cells for which the background have a grey 
shade that becomes darker with the accuracy of the estimation.  
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3. POTENTIAL FOR AUTOMATIC MAPPING 
A fit-for-purpose automatic mapping system for environmental emergency management 

should be able to provide accurate estimations fairly quickly while minimising the need to fine-
tune the estimation parameters to achieve a desired outcome. Although the robustness of 
geostatistical methods makes them good candidates for such a system, the results depend strongly 
on the model chosen to describe the spatial correlation of the variable (the semivariogram) which is 
used further to derive the weights of the estimation function. In addition, semivariogram models 
are frequently difficult to estimate accurately in areas with strong local fluctuations and sparse 
information, apart from being non-linear in some of their parameters. In this regard, semivariogram 
fitting still remains very much an art and is very rarely an automated process (ISAAKS & 
SRIVASTAVA, 1989; GOOVAERTS 1997). Still other important parameters would have to be 
optimised at the mapping stage during kriging, for example the size and shape of the search 
neighbourhood and the kriging flavour to be applied to that particular problem (for example, 
cokriging versus external drift kriging in order to incorporate secondary information). 

The self-learning ability of artificial neural networks (ANN) seems to offer an interesting 
solution in that they offer the expert with methods that appear to be independent of an a priori 
knowledge of the spatial correlation of the investigated phenomenon. Although early results on 
radioactive measurements have shown that these methods tend to over generalise when the 
measurements fluctuate strongly at short distances (KANEVSKY, 1995 ; DE BOLLIVIER et al., 1997; 
KANEVSKY et al., 1997; GILARDI & DUBOIS, 2000), more recent developments, which 
nevertheless require some prior knowledge on the spatial structure of the analysed variable, gave 
much better results (GILARDI & BENGIO, 2001). However, these methods are still fairly new and 
need further testing as well as a sound methodology to tune the numerous parameters that they 
require. For example, in the use of RBF networks, the shape (analogous to the semivariogram 
model) and reach (analogous to the range) of the basis function would still have to be optimised. 
The heavy computing load of some backpropagation systems, around 24 hours to obtain the SIC97 
results, is also unacceptable for an environmental emergency system. Other parameters to optimise 
include number of hidden layers, interconnecting nodes, optimisation tolerance, and so forth. 
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Figure 1. MAE and RMSE of the methods used in the frame of SIC97. 
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Figure 2. The RMSE is plotted against the percentage of error in the estimation of the median 
value of the 367 samples to be estimated. Negative percentages show under estimations of the 
median.  
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3.1 Performing cross-validations 
Cross-validation, also known as the “leave one out” technique, can traditionally be applied 

to optimise model parameters. In cross-validation a data point is removed one at a time and the 
value of the variable at that same location is estimated. One can then derive a residual value by 
subtracting from the removed value. The removed point is placed back into the data set and the 
operation is repeated at another location until all the sample values have been removed at least 
once and a complete set of residual values have been obtained. The average value of the residuals 
is usually used to compare the results obtained for different methods and/or a combination of 
different parameters such as search neighbourhood radius, anisotropy factor, and so forth (refer 
EFRON & GONG, 1983). 

The cross-validation approach has been applied to the SIC97 data set for three different 
interpolators: inverse distance weighting (IDW), the multiquadratic function (MQ), and ordinary 
kriging (OK). The parameters that were tested were the anisotropy ratio and the azimuth angle for 
each method. For IDW, the exponent associated with the distance measure was also tested. For 
OK, the range of the semivariogram (set to spherical model for this example) was tested. Rather 
than using a neighbourhood in which one would search the points to be used to perform the 
estimation, all data were used for each calculation in order to better underline the differences 
between the different algorithms. The statistics of the estimates as well as the errors of the 
residuals are given respectively in Tables 6 and 7.  
 

Method Min. (0) Max. (517) Mean (185) Std. dev. (111) 
IDW 17 563 184 96 
MQ 14 486 182 96 
OK 21 480 182 97 

Table 6. Statistics of the 367 estimates obtained by cross-validation. 
 

Method RMSE MAE 
IDW 63.0 44.4
MQ 59.3 40.8
OK 60.2 41.3

Table 7. Mean errors for the methods calibrated by cross-validation. 
 
One will notice the poorer results given by IDW while MQ and OK gave results which are nearly 
identical. Compared to those obtained by the participants of SIC97, these are acceptable results but 
nevertheless not as good as most of the results obtained by the experts. The calculation time, 
ranging from 1 hour for IDW to 6 hours for OK on a PC Pentium 300 MHz machine, is another 
argument against using such approaches for an emergency mapping system. Last but not least, for 
OK only the spherical semivariogram model was assumed, although cross-validation against other 
models would have increased computing time drastically. 

3.2 Performing k-fold cross-validations 
In order to evaluate the impact of the data set on the previous results, another kind of 

cross-validation, known as a k-fold cross-validation was performed. Instead of working only with 
the 100 data points, subsets of increasing size have been used to define the optimal parameters for 
IDW, MQ, and OK. This method was expected to underline the changes in the responses of these 
algorithms to different data densities. Leave one out cross validations were therefore made on 
randomly select subsets of the full SIC97 data set (467 points). The sizes of these subsets were 25, 
50, 75, 100, 125, 150, 175, 200, 225, 250, 275 and 300 data points and this operation was repeated 
10 times to reduce any bias in the sampling. 



 262

The average of the 10 lowest RMSEs obtained by cross-validation to set the optimal 
parameters of OK is plotted in Figure 3 against the number of points used during the cross-
validation, hereafter called the training points. This box plot is very similar to those obtained for 
MQ and IDW which are not shown here: the estimation error was found to decrease rapidly until 
about 100 points and remained quasi-stable until 225 points before decreasing again. This figure 
clearly indicates that using 100 points was enough information for all three interpolators to 
estimate the remainder of the data set.  

Once the best combination of parameters for each interpolator was found for each data set, 
these parameters were used to estimate the values of the remaining data points (467 - 25 = 442 
points; ... ; 467 - 300 = 167 points). The mean RMSE for the three methods is plotted in Figure 4 
according to the number of training points used during the optimisation of the selection of the 
parameters of the interpolator. The mean RMSEs decrease in a similar way for the three methods 
with an increase of the training points, thereby confirming the efficiency of the cross-validation 
method. IDW consistently gave the poorest results, while MQ and OK performed quite similarly. 
In general MQ generated globally better results, especially when more than 225 points were used 
in the training data set.  
 

 

Figure 3. Evolution of the mean RMSE (10 repetitions) obtained for the optimal combination of the 
OK parameters set by cross-validation as a function of the number of training points used. 
 

Figure 4 shows an interesting paradox which reflects one of the drawbacks of the cross-
validation approach. While the RMSE remains nearly stable after 100 points during the cross-
validation step, the RMSE obtained with the optimised interpolator on the remaining data shows 
that the errors are still decreasing, that is the system was still learning efficiently even if the 
optimisation step did not seem to show any improvement of the method when additional training 
data were used. This observation interestingly shows that 100 points were not fully representative 
of the whole phenomenon which is characterised by global structures oriented at 45 degrees and by 
strong local fluctuations which are difficult to take into account, or at least difficult to detect 
through leave-one-out cross-validations. 
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Figure 4. Evolution of the mean RMSE (10 repetitions) calculated on the remaining data set (467 
points – N) after optimisation of the parameters of the interpolation functions through cross-
validation .  

 
The above comments should remind the reader of the risks one is taking when a cross-

validation method is used to select the best candidate to establish a final map. Cross-validations are 
indeed strongly dependent on the training data used during the learning process. Data that do not 
represent the studied phenomenon fully or even one which is simply clustered will almost always 
generate biased results. Indeed, to quote one prominent geostatistician, cross-validation does not 
guarantee that the model used is correct, but merely that it is not grossly incorrect. 

4. CONCLUSIONS. 
The comparison of three different interpolation methods calibrated through cross-

validation techniques has shown that MQ, OK, and IDW gave similar results when applied to the 
SIC97 data set, with MQ performing marginally better. The use of the same methods by the 
participants of SIC97 has generated much better results, showing the advantage of using more 
parameters, e.g. a search strategy to select the neighbouring points to use during the estimation, 
when performing a spatial interpolation. The prior selection of possible ranges of the values taken 
by the parameters also dramatically increases the speed of work. A simple analysis of the spatial 
correlation of the variable allows the expert to select a possible model while its selection by cross-
validation is not only very computing intensive but might also lead to a wrong model. Even though 
many different geostatistical functions have been used, they all generated good results and 
confirmed their robustness as well as the impact of the semivariogram on the estimates. To 
illustrate this last point, the pairs of methods 20a & 21b and 15b & 21a differ only in the choice of 
the semivariogram model used and one can see that the difference in the results is more 
pronounced here than in those obtained by different methods using the same model as it was the 
case in ANONYMOUS 3 (21 a, b, c). This again underlines the impact of human factors which has 
been decisive in this exercise. 

To be efficiently applied, expert knowledge not only requires one to have access to a large 
variety of analysis tools but these tools moreover need to be highly interactive. This is illustrated in 
SIC97 in the way the participants have explored their data and in the choice of the software used 
(e.g. Variowin, PANNATIER, 1996). It is therefore not a surprise that not a single geographic 



 264

information system (GIS) was used in the framework of SIC97 since these tools do not yet provide 
experts with advanced functions and/or with the possibility to set the parameters of the 
interpolation function in an efficient way (DUBOIS, 2001b). As a consequence, the establishment of 
an emergency mapping system (EMS) cannot be based on an automatic system but moreover 
would require the development of highly interactive tools as well as a large range of interpolation 
functions that need to be perfectly understood by the expert. One can also expect methods based on 
Bayesian geostatistics in the near future to play a major role in EMS because these methods offer 
the possibility of taking prior knowledge of the analysed phenomena into account in many different 
ways (PILZ & KNOSPE, 1997).  

Self-learning algorithms seem to have a promising future because of their ease with which 
multiple secondary variables can be included in the mapping process without the need to perform 
tedious cross-correlation modeling as is required by geostatistical methods. If a prior analysis of 
the spatial correlation can, in theory, be avoided, which renders the method even more attractive 
for automatic mapping systems, GILARDI and BENGIO (2001) have nevertheless shown that the use 
of such a prior knowledge is still necessary to obtain results that can compete with those obtained 
with geostatistical methods. Self–learning methods also still require faster algorithms before 
becoming more practically useful.  
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ANNEX 

1. ALI A. 
Method: adaptative kernel function. (1) 

2. ALLARD D.  
Method: class kriging. (2) 

3. ATKINSON P. M. & LLOYD C. D.  
Method: ordinary kriging (3a) and indicator kriging. (3b) 

4. BRUNO R. & CAPICOTTO B.  
Method: Intrinsic Random Functions or order k, IRFk. (4) 

5. GALLO G., SPAGNUOLO M. & SPINELLO S.  
Method: fuzzy B-splines. (5) 

6. GENTON M. G. & FURRER R. 
Method: None. Hand estimation. (6) 

7. GENTON M. G.& FURRER R.  
Method: ordinary kriging with quadratic drift. (7) 
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8. HUANG Y., WONG P., & GEDEON T.  
Method: fuzzy reasoning-based function. (8) 

9. HUTCHINSON M. F.  
Method: thin plate smoothing splines. (9a) 

9b. HUTCHINSON M. F.  
Method: thin plate smoothing splines. (9b) 

10. KANEVSKI M., DEMYANOV V. CHERNOV S., SAVELIEVA E. & TIMONIN V.  
Method: ordinary kriging with drift modelled with neural networks (10) 

11. LEE S., CHO S. & WONG P. M. 
Method: Artificial neural networks of type radial basis function. (11) 

12. LEE Y. -M.  
Method: Maximum entropy estimator. (12) 

13. RAJAGOPALAN B. & LALL U.  
Method: Locally weighted polynomial function. (13) 

14. RATY L. & M. GILBERT.  
Method: a variance of median kriging. (14) 

15. SAVELIEV A. A., MUCHARAMOVA S. S. & PILIUGIN A. G.  
Method: surface under tension (15 a), and three types of ordinary kriging (OK) : OK on the whole 
analysed territory (15b), OK applied on three regions with an anisotropical model of 
semivariogram (15c) and OK applied on three regions without anisotropy (15d) 

16. THIEKEN A. H.  
Method: multiquadratic functions with three different anisotropy levels. From the lowest level of 
anisotropy to the highest level , the functions are referred respectively with (16a), (16b) and (16c). 

17. TOMCZAK M.  
Method: inverse weighted distance function with (17b) and without (17a) Jacknifing. 

18. WENDELBERGER J. G.  
Method: multidimensional smoothing splines. (18) 

19. ANONYMOUS 1.  
Methods : Neural network with two hidden layers.  
Statistics for the 367 estimates 

Statistics Min. Max. Mean Median Std. dev. 
Observed 0 517 185 162 111 
Estimated (19) -413 654 165 148 139.46 

Estimation errors: 

Statistics RMSE MAE 
Errors (19) 99.02 68.65
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20. ANONYMOUS 2.  
Methods : ordinary kriging (OK) and Sequential Gaussian Simulations (SGS) after a normal score 
transformation of the data. The Gaussian semivariogram model used is oriented towards 45° with 
following parameters: anisotropy = 0.35, range = 54.4 km, sill = 0.95, nugget effect = 0.05.  
 
Statistics for the 367 estimates: 

Statistics Min. Max. Mean Median Std. dev. 
Observed 0 517 185 162 111 
Estimated (OK)   (20a) 7 540 185 154 108 
Estimated  (SGS) (20b) 17 625 178 157 102 

Estimation errors: 

Statistics RMSE MAE 
Errors (OK)    (20a) 66 46
Errors  (SGS)  (20b) 64 44

21. ANONYMOUS 3.  
Methods: three kriging methods have been used: ordinary kriging (OK), OK with a prior normal 
score transformation of the data (OK+NS) and OK with a linear drift (OK+D). A unique spherical 
semivariogram model oriented at 64° has been used with the following parameters: anisotropy = 
0.5, range  = 49.4 km, sill = 1.03, nugget effect = 0.  
Statistics for the 367 estimates 

Statistics Min. Max. Mean Median Std. dev. 
Observed 0 517 185 162 111 
Estimated (OK)         (21a) 20 491 183 166 97 
Estimated (OK+NS)  (21b) 22 453 181 167 94 
Estimated (OK+D)    (21c) 22 486 184 162 98 

Estimation errors: 

Statistics RMSE MAE 
Errors (OK)           (21a) 55.38 38.79
Errors (OK + NS)  (21b) 53.68 38.37
Errors (OK + D)    (21c) 55.00 38.42

22. ANONYMOUS 4.  
Methods: three kinds of neural networks have been used: two multilayer perceptrons with 1 and 2 
hidden layers (MLP 1 & MLP 2) and one radial basis function (RBF). A hybrid neural network 
(HNN) of type radial basis function has been applied to a mixture of the rainfall data and the 
outputs provided by the previous three methods. The training of the neurones was made on 20 
subsets of 70 measures of the input data and validated with the remaining 30 points.  
Statistics for the 367 estimates: 

Statistics Min. Max. Mean Median Std. dev. 
Observed 0 517 185 162 111 
Estimated (RBF)    (22a) 0 420 195 187 104 
Estimated (MLP 1) (22b) 27 449 184 140 114 
Estimated (MLP 2) (22c) 22 377 196 191 94 
Estimated  (HNN)  (22d) 25 435 189 164 103 
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Estimation errors: 

Statistics RMSE MAE 
Errors (RBF)      (22a) 73.95 54.39
Errors (MLP 1)  (22b) 82.46 61.40
Errors (MLP 2)  (22c) 62.72 48.91
Errors  (HNN)   (22d) 54.28 39.64
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